ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/eventsel.tex
Revision: 1.14
Committed: Sun Nov 14 11:46:04 2010 UTC (14 years, 5 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
Changes since 1.13: +9 -4 lines
Log Message:
added a few missing tigs

File Contents

# User Rev Content
1 claudioc 1.1 \section{Event Preselection}
2     \label{sec:eventSel}
3 claudioc 1.12 The purpose of the preselection is to define a data sample rich
4     in $t\bar{t} \to$ dileptons. We compare the kinematical
5     properties of this sample with expectations from $t\bar{t}$
6     Monte Carlo.
7    
8     The preselection is based on the
9     $t\bar{t}$ analysis~\cite{ref:top}.
10 benhoob 1.13 We select events with two opposite sign, well-identified and isolated
11 claudioc 1.1 leptons ($ee$, $e\mu$, or $\mu\mu$); one of the leptons must
12     have $P_T > 20$ GeV,
13 benhoob 1.13 the other one must have $P_T > 10$ GeV. Events with dilepton mass
14     consistent with $Z \to ee/\mu\mu$ are rejected.
15 claudioc 1.11 In case of events with
16 claudioc 1.5 more than two such leptons, we select the pair that maximizes the scalar
17 benhoob 1.10 sum of lepton $P_T$'s.
18     There must be two JPT
19 claudioc 1.5 jets of $P_T > 30$ GeV and $|\eta| < 2.5$; the scalar sum of the
20     $P_T$ of all such jets must exceed 100 GeV; jets must pass
21 claudioc 1.11 {\tt caloJetId} and be separated by $\Delta R >$ 0.4 from any
22     lepton passing the selection.
23 benhoob 1.10 Finally $\met > 50$ GeV (we use tcMet). More details are given in the subsections below.
24 claudioc 1.1
25     \subsection{Event Cleanup}
26     \label{sec:cleanup}
27     \begin{itemize}
28     \item Scraping cut: if there are $\geq$ 10 tracks, require at
29     least 25\% of them to be high purity.
30     \item Require at least one good vertex:
31     \begin{itemize}
32     \item not fake
33     \item ndof $>$ 4
34     \item $|\rho| < 2$ cm
35 claudioc 1.3 \item $|z| < 24$ cm.
36 claudioc 1.1 \end{itemize}
37     \end{itemize}
38    
39    
40     \subsection{Muon Selection}
41     \label{sec:muon}
42    
43     Muon candidates are RECO muon objects passing the following
44     requirements:
45     \begin{itemize}
46    
47 claudioc 1.5 \item $|\eta| < 2.4$.
48 claudioc 1.1
49     \item Global Muon and Tracker Muon.
50    
51     \item $\chi^2$/ndof of global fit $<$ 10.
52    
53     \item At least 11 hits in the tracker fit.
54    
55     \item Transverse impact parameter with respect to the beamspot $<$ 200 $\mu$m.
56    
57     \item $Iso \equiv $ $E_T^{\rm iso}$/Max(20 GeV, $P_T$) $<$ 0.15.
58     $E_T^{\rm iso}$
59     is defined as the sum of transverse energy/momentum deposits in ecal,
60     hcal, and tracker, in a cone of 0.3.
61    
62     \item At least one of the hits from the
63     standalone muon must be used in the global fit.
64    
65 claudioc 1.11 \item Require tracker $\Delta P_T/P_T < 0.1$. This cut was not in the original top analysis.
66     It is motivated by the observation of
67     poorly measured muons in data with large
68     relative $P_T$ uncertainty, giving significant contributions to the \met.
69 claudioc 1.9 %{\color{red} This is not applied to the 11 pb iteration.}
70 claudioc 1.7
71 claudioc 1.6
72 claudioc 1.1 \end{itemize}
73    
74    
75    
76 claudioc 1.2 \subsection{Electron Selection}
77 claudioc 1.1 \label{sec:electron}
78    
79     Electron candidates are RECO GSF electrons passing the following
80     requirements:
81    
82     \begin{itemize}
83    
84 claudioc 1.12 % \item $P_T > 10$ GeV. (The $t\bar{t}$ analysis uses 20 GeV but for
85     % completeness we calculate FR down to 10 GeV).
86 claudioc 1.1
87     \item $|\eta| < 2.5$.
88    
89     \item SuperCluster $E_T > 10$ GeV.
90    
91     \item The electron must be ecal seeded.
92    
93     \item VBTF90 identification\cite{ref:vbtf}.
94    
95     \item Transverse impact parameter with respect to the beamspot $<$ 400 $\mu$m.
96    
97     \item $Iso \equiv $ $E_T^{\rm iso}$/Max(20 GeV, $P_T$) $<$ 0.15.
98     $E_T^{\rm iso}$
99     is defined as the sum of transverse energy/momentum deposits in ecal,
100     hcal, and tracker, in a
101     cone of 0.3. A 1 GeV pedestal is subtracted from the ecal energy
102     deposition in the EB, however the ecal energy is never allowed to
103     go negative.
104    
105     \item Electrons with a tracker or global muon within $\Delta R$ of
106     0.1 are vetoed.
107    
108     \item The number of missing expected inner hits must be less than
109     two\cite{ref:conv}.
110    
111     \item Conversion removal via partner track finding: any electron
112     where an additional GeneralTrack is found with $Dist < 0.02$ cm
113     and $\Delta \cot \theta < 0.02$ is vetoed\cite{ref:conv}.
114    
115 claudioc 1.4 \item Cleaning for ECAL spike (aka Swiss-Cross cleaning) has been applied
116     at the reconstruction level (CMSSW 38x).
117 claudioc 1.1
118     \end{itemize}
119    
120 claudioc 1.5 \subsection{Invariant mass requirement}
121 claudioc 1.2 \label{sec:zveto}
122    
123     We remove $e^+e^-$ and $\mu^+ \mu^-$ events with invariant
124 claudioc 1.5 mass between 76 and 106 GeV. We also remove events
125 claudioc 1.11 with invariant mass $<$ 10 GeV, since this kinematical region is
126     not well reprodced in CMS Monte Carlos.
127    
128     In addition, we remove $Z \to \mu\mu\gamma$
129     candidates with the $\gamma$ collinear with one of the muons. This is
130     done as follows:
131     if the ecal energy associated with one of the muons is greater than 6 GeV,
132     we add this energy to the momentum of the initial muon, and we recompute
133     the $\mu\mu$ mass. If this mass is between 76 and 106 GeV, the event is rejected.
134    
135 claudioc 1.2
136     \subsection{Trigger Selection}
137 claudioc 1.1 \label{sec:trigSel}
138    
139     Because most of the triggers implemented in the 2nd half of the
140 claudioc 1.12 2010 run were not implemented in the Monte Carlo,
141     we do not make any requirements on HLT bits in the Monte Carlo.
142     Instead, as discussed in
143 claudioc 1.1 Section~\ref{sec:trgEff}, a trigger efficiency weight is applied
144     to each event, based on the trigger efficiencies measured on data.
145     Trigger efficiency weights are very close to 1.
146    
147 claudioc 1.5 %For data, we require the logical OR of all (or most?) unprescaled
148     %single and double lepton triggers that were deployed during the 2010
149     %run. These are:
150     %{\color{red} Here we need to list the triggers, somehow.}
151    
152     For data, we use a cocktail of unprescaled single
153     and double lepton triggers. An event
154     in the $ee$ final state is required to pass at least 1
155     single- or double-electron trigger, a
156     $\mu\mu$ event is required to pass at least 1 single
157     or double-muon trigger, while an $e\mu$ event
158     is required to pass at least 1 single-muon, single-electron,
159     or $e-\mu$ cross trigger.
160     % We currently
161     % do not require MC events to pass any triggers.
162 claudioc 1.1
163 claudioc 1.11
164    
165    
166    
167    
168    
169    
170    
171 claudioc 1.5 \begin{itemize}
172     \item single-muon triggers
173     \begin{itemize}
174     \item \verb=HLT_Mu5=
175     \item \verb=HLT_Mu7=
176     \item \verb=HLT_Mu9=
177     \item \verb=HLT_Mu11=
178     \item \verb=HLT_Mu13_v1=
179     \item \verb=HLT_Mu15_v1=
180     \item \verb=HLT_Mu17_v1=
181     \item \verb=HLT_Mu19_v1=
182     \end{itemize}
183     \item double-muon triggers
184     \begin{itemize}
185     \item \verb=HLT_DoubleMu3=
186     \item \verb=HLT_DoubleMu3_v2=
187     \item \verb=HLT_DoubleMu5_v1=
188     \end{itemize}
189     \item single-electron triggers
190     \begin{itemize}
191     \item \verb=HLT_Ele10_SW_EleId_L1R=
192     \item \verb=HLT_Ele10_LW_EleId_L1R=
193     \item \verb=HLT_Ele10_LW_L1R=
194     \item \verb=HLT_Ele10_SW_L1R=
195     \item \verb=HLT_Ele15_SW_CaloEleId_L1R=
196     \item \verb=HLT_Ele15_SW_EleId_L1R=
197     \item \verb=HLT_Ele15_SW_L1R=
198     \item \verb=HLT_Ele15_LW_L1R=
199     \item \verb=HLT_Ele17_SW_TightEleId_L1R=
200     \item \verb=HLT_Ele17_SW_TighterEleId_L1R_v1=
201     \item \verb=HLT_Ele17_SW_CaloEleId_L1R=
202     \item \verb=HLT_Ele17_SW_EleId_L1R=
203     \item \verb=HLT_Ele17_SW_LooseEleId_L1R=
204 claudioc 1.14 \item \verb=HLT_Ele17_SW_TighterEleIdIsol_L1R_v1=
205 claudioc 1.5 \item \verb=HLT_Ele17_SW_TighterEleIdIsol_L1R_v2=
206 claudioc 1.14 \item \verb=HLT_Ele17_SW_TighterEleIdIsol_L1R_v3=
207 claudioc 1.5 \item \verb=HLT_Ele20_SW_L1R=
208     \item \verb=HLT_Ele22_SW_TighterEleId_L1R_v2=
209 claudioc 1.14 \item \verb=HLT_Ele22_SW_TighterEleId_L1R_v3=
210     \item \verb=HLT_Ele22_SW_TighterCaloIdIsol_L1R_v2=
211     \item \verb=HLT_Ele27_SW_TightCaloEleIdTrack_L1R_v1=
212 claudioc 1.5 \item \verb=HLT_Ele32_SW_TightCaloEleIdTrack_L1R_v1=
213 claudioc 1.14 \item \verb=HLT_Ele32_SW_TighterEleId_L1R_v1=
214 claudioc 1.5 \item \verb=HLT_Ele32_SW_TighterEleId_L1R_v2=
215     \end{itemize}
216     \item double-electron triggers
217     \begin{itemize}
218     \item \verb=HLT_DoubleEle15_SW_L1R_v1=
219     \item \verb=HLT_DoubleEle17_SW_L1R_v1=
220     \item \verb=HLT_Ele17_SW_TightCaloEleId_Ele8HE_L1R_v1=
221 claudioc 1.14 \item \verb=HLT_Ele17_SW_TightCaloEleId_Ele8HE_L1R_v2=
222 claudioc 1.5 \item \verb=HLT_Ele17_SW_TightCaloEleId_SC8HE_L1R_v1=
223     \item \verb=HLT_DoubleEle10_SW_L1R=
224     \item \verb=HLT_DoubleEle5_SW_L1R=
225     \end{itemize}
226     \item e-$\mu$ cross triggers
227     \begin{itemize}
228     \item \verb=HLT_Mu5_Ele5_v1=
229     \item \verb=HLT_Mu5_Ele9_v1=
230     \item \verb=HLT_Mu11_Ele8_v1=
231     \item \verb=HLT_Mu8_Ele8_v1=
232 claudioc 1.14 \item \verb=HLT_Mu5_Ele13_v1=
233 claudioc 1.5 \item \verb=HLT_Mu5_Ele13_v2=
234     \item \verb=HLT_Mu5_Ele17_v1=
235 claudioc 1.14 \item \verb=HLT_Mu5_Ele17_v2=
236 claudioc 1.5 \end{itemize}
237     \end{itemize}