ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/eventsel.tex
Revision: 1.4
Committed: Mon Nov 1 17:52:52 2010 UTC (14 years, 6 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
Changes since 1.3: +3 -3 lines
Log Message:
more

File Contents

# Content
1 \section{Event Preselection}
2 \label{sec:eventSel}
3 {\color{red} This needs to be fixed up -- probably many mistakes present.}\\
4 As mentioned in the introduction, the preselection is based on the
5 $t\bar{t}$ analysis. We select events with two opposite sign isolated
6 leptons ($ee$, $e\mu$, or $\mu\mu$); one of the leptons must
7 have $P_T > 20$ GeV,
8 the other one must have $P_T > 10$ GeV; there must be two JPT
9 jets of $P_T > 30$ GeV and $|\eta| <$ {\color{red} xx}; the scalar sum of the
10 $P_T$ of all such jets must exceed 100 GeV; finally $\met > 50$ GeV
11 (we use tcMet). More details are given in the subsection below.
12
13 \subsection{Event Cleanup}
14 \label{sec:cleanup}
15 \begin{itemize}
16 \item Scraping cut: if there are $\geq$ 10 tracks, require at
17 least 25\% of them to be high purity.
18 \item Require at least one good vertex:
19 \begin{itemize}
20 \item not fake
21 \item ndof $>$ 4
22 \item $|\rho| < 2$ cm
23 \item $|z| < 24$ cm.
24 \end{itemize}
25 \end{itemize}
26
27
28 \subsection{Muon Selection}
29 \label{sec:muon}
30
31 Muon candidates are RECO muon objects passing the following
32 requirements:
33 \begin{itemize}
34
35 \item $|\eta| < 2.5$.
36
37 \item Global Muon and Tracker Muon.
38
39 \item $\chi^2$/ndof of global fit $<$ 10.
40
41 \item At least 11 hits in the tracker fit.
42
43 \item Transverse impact parameter with respect to the beamspot $<$ 200 $\mu$m.
44
45 \item $Iso \equiv $ $E_T^{\rm iso}$/Max(20 GeV, $P_T$) $<$ 0.15.
46 $E_T^{\rm iso}$
47 is defined as the sum of transverse energy/momentum deposits in ecal,
48 hcal, and tracker, in a cone of 0.3.
49
50 \item At least one of the hits from the
51 standalone muon must be used in the global fit.
52
53 \end{itemize}
54
55
56
57 \subsection{Electron Selection}
58 \label{sec:electron}
59
60 Electron candidates are RECO GSF electrons passing the following
61 requirements:
62
63 \begin{itemize}
64
65 \item $P_T > 10$ GeV. (The $t\bar{t}$ analysis uses 20 GeV but for
66 completeness we calculate FR down to 10 GeV).
67
68 \item $|\eta| < 2.5$.
69
70 \item SuperCluster $E_T > 10$ GeV.
71
72 \item The electron must be ecal seeded.
73
74 \item VBTF90 identification\cite{ref:vbtf}.
75
76 \item Transverse impact parameter with respect to the beamspot $<$ 400 $\mu$m.
77
78 \item $Iso \equiv $ $E_T^{\rm iso}$/Max(20 GeV, $P_T$) $<$ 0.15.
79 $E_T^{\rm iso}$
80 is defined as the sum of transverse energy/momentum deposits in ecal,
81 hcal, and tracker, in a
82 cone of 0.3. A 1 GeV pedestal is subtracted from the ecal energy
83 deposition in the EB, however the ecal energy is never allowed to
84 go negative.
85
86 \item Electrons with a tracker or global muon within $\Delta R$ of
87 0.1 are vetoed.
88
89 \item The number of missing expected inner hits must be less than
90 two\cite{ref:conv}.
91
92 \item Conversion removal via partner track finding: any electron
93 where an additional GeneralTrack is found with $Dist < 0.02$ cm
94 and $\Delta \cot \theta < 0.02$ is vetoed\cite{ref:conv}.
95
96 \item Cleaning for ECAL spike (aka Swiss-Cross cleaning) has been applied
97 at the reconstruction level (CMSSW 38x).
98
99 \end{itemize}
100
101 \subsection{Z veto}
102 \label{sec:zveto}
103
104 We remove $e^+e^-$ and $\mu^+ \mu^-$ events with invariant
105 mass between 76 and 106 GeV.
106
107
108 \subsection{Trigger Selection}
109 \label{sec:trigSel}
110
111 Because most of the triggers implemented in the 2nd half of the
112 2010 run were not implemented in the Monte Carlo, no trigger
113 selection is applied on Monte Carlo data. As discussed in
114 Section~\ref{sec:trgEff}, a trigger efficiency weight is applied
115 to each event, based on the trigger efficiencies measured on data.
116 Trigger efficiency weights are very close to 1.
117
118 For data, we require the logical OR of all (or most?) unprescaled
119 single and double lepton triggers that were deployed during the 2010
120 run. These are:
121 {\color{red} Here we need to list the triggers, somehow.}
122