ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/eventsel.tex
Revision: 1.6
Committed: Thu Nov 4 04:14:21 2010 UTC (14 years, 6 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
Changes since 1.5: +4 -2 lines
Log Message:
various

File Contents

# Content
1 \section{Event Preselection}
2 \label{sec:eventSel}
3 %{\color{red} This needs to be fixed up -- probably many mistakes present.}\\
4 As mentioned in the introduction, the preselection is based on the
5 $t\bar{t}$ analysis. We select events with two opposite sign isolated
6 leptons ($ee$, $e\mu$, or $\mu\mu$); one of the leptons must
7 have $P_T > 20$ GeV,
8 the other one must have $P_T > 10$ GeV\footnote{In case of events with
9 more than two such leptons, we select the pair that maximizes the scalar
10 sum of lepton $P_T$'s.};
11 there must be two JPT
12 jets of $P_T > 30$ GeV and $|\eta| < 2.5$; the scalar sum of the
13 $P_T$ of all such jets must exceed 100 GeV; jets must pass
14 {\tt caloJetId} and be separated by $\Delta R >$ 0.4 from the
15 two leptons. Finally $\met > 50$ GeV
16 (we use tcMet). More details are given in the subsections below.
17
18 \subsection{Event Cleanup}
19 \label{sec:cleanup}
20 \begin{itemize}
21 \item Scraping cut: if there are $\geq$ 10 tracks, require at
22 least 25\% of them to be high purity.
23 \item Require at least one good vertex:
24 \begin{itemize}
25 \item not fake
26 \item ndof $>$ 4
27 \item $|\rho| < 2$ cm
28 \item $|z| < 24$ cm.
29 \end{itemize}
30 \end{itemize}
31
32
33 \subsection{Muon Selection}
34 \label{sec:muon}
35
36 Muon candidates are RECO muon objects passing the following
37 requirements:
38 \begin{itemize}
39
40 \item $|\eta| < 2.4$.
41
42 \item Global Muon and Tracker Muon.
43
44 \item $\chi^2$/ndof of global fit $<$ 10.
45
46 \item At least 11 hits in the tracker fit.
47
48 \item Transverse impact parameter with respect to the beamspot $<$ 200 $\mu$m.
49
50 \item $Iso \equiv $ $E_T^{\rm iso}$/Max(20 GeV, $P_T$) $<$ 0.15.
51 $E_T^{\rm iso}$
52 is defined as the sum of transverse energy/momentum deposits in ecal,
53 hcal, and tracker, in a cone of 0.3.
54
55 \item At least one of the hits from the
56 standalone muon must be used in the global fit.
57
58 \item {\color{red} Should we add a cut on the momentum error?}
59
60 \end{itemize}
61
62
63
64 \subsection{Electron Selection}
65 \label{sec:electron}
66
67 Electron candidates are RECO GSF electrons passing the following
68 requirements:
69
70 \begin{itemize}
71
72 \item $P_T > 10$ GeV. (The $t\bar{t}$ analysis uses 20 GeV but for
73 completeness we calculate FR down to 10 GeV).
74
75 \item $|\eta| < 2.5$.
76
77 \item SuperCluster $E_T > 10$ GeV.
78
79 \item The electron must be ecal seeded.
80
81 \item VBTF90 identification\cite{ref:vbtf}.
82
83 \item Transverse impact parameter with respect to the beamspot $<$ 400 $\mu$m.
84
85 \item $Iso \equiv $ $E_T^{\rm iso}$/Max(20 GeV, $P_T$) $<$ 0.15.
86 $E_T^{\rm iso}$
87 is defined as the sum of transverse energy/momentum deposits in ecal,
88 hcal, and tracker, in a
89 cone of 0.3. A 1 GeV pedestal is subtracted from the ecal energy
90 deposition in the EB, however the ecal energy is never allowed to
91 go negative.
92
93 \item Electrons with a tracker or global muon within $\Delta R$ of
94 0.1 are vetoed.
95
96 \item The number of missing expected inner hits must be less than
97 two\cite{ref:conv}.
98
99 \item Conversion removal via partner track finding: any electron
100 where an additional GeneralTrack is found with $Dist < 0.02$ cm
101 and $\Delta \cot \theta < 0.02$ is vetoed\cite{ref:conv}.
102
103 \item Cleaning for ECAL spike (aka Swiss-Cross cleaning) has been applied
104 at the reconstruction level (CMSSW 38x).
105
106 \end{itemize}
107
108 \subsection{Invariant mass requirement}
109 \label{sec:zveto}
110
111 We remove $e^+e^-$ and $\mu^+ \mu^-$ events with invariant
112 mass between 76 and 106 GeV. We also remove events
113 with invariant mass $<$ 10 GeV.
114
115 \subsection{Trigger Selection}
116 \label{sec:trigSel}
117
118 Because most of the triggers implemented in the 2nd half of the
119 2010 run were not implemented in the Monte Carlo, no trigger
120 selection is applied on Monte Carlo data. As discussed in
121 Section~\ref{sec:trgEff}, a trigger efficiency weight is applied
122 to each event, based on the trigger efficiencies measured on data.
123 Trigger efficiency weights are very close to 1.
124
125 %For data, we require the logical OR of all (or most?) unprescaled
126 %single and double lepton triggers that were deployed during the 2010
127 %run. These are:
128 %{\color{red} Here we need to list the triggers, somehow.}
129
130 For data, we use a cocktail of unprescaled single
131 and double lepton triggers. An event
132 in the $ee$ final state is required to pass at least 1
133 single- or double-electron trigger, a
134 $\mu\mu$ event is required to pass at least 1 single
135 or double-muon trigger, while an $e\mu$ event
136 is required to pass at least 1 single-muon, single-electron,
137 or $e-\mu$ cross trigger.
138 % We currently
139 % do not require MC events to pass any triggers.
140
141 \begin{itemize}
142 \item single-muon triggers
143 \begin{itemize}
144 \item \verb=HLT_Mu5=
145 \item \verb=HLT_Mu7=
146 \item \verb=HLT_Mu9=
147 \item \verb=HLT_Mu11=
148 \item \verb=HLT_Mu13_v1=
149 \item \verb=HLT_Mu15_v1=
150 \item \verb=HLT_Mu17_v1=
151 \item \verb=HLT_Mu19_v1=
152 \end{itemize}
153 \item double-muon triggers
154 \begin{itemize}
155 \item \verb=HLT_DoubleMu3=
156 \item \verb=HLT_DoubleMu3_v2=
157 \item \verb=HLT_DoubleMu5_v1=
158 \end{itemize}
159 \item single-electron triggers
160 \begin{itemize}
161 \item \verb=HLT_Ele10_SW_EleId_L1R=
162 \item \verb=HLT_Ele10_LW_EleId_L1R=
163 \item \verb=HLT_Ele10_LW_L1R=
164 \item \verb=HLT_Ele10_SW_L1R=
165 \item \verb=HLT_Ele15_SW_CaloEleId_L1R=
166 \item \verb=HLT_Ele15_SW_EleId_L1R=
167 \item \verb=HLT_Ele15_SW_L1R=
168 \item \verb=HLT_Ele15_LW_L1R=
169 \item \verb=HLT_Ele17_SW_TightEleId_L1R=
170 \item \verb=HLT_Ele17_SW_TighterEleId_L1R_v1=
171 \item \verb=HLT_Ele17_SW_CaloEleId_L1R=
172 \item \verb=HLT_Ele17_SW_EleId_L1R=
173 \item \verb=HLT_Ele17_SW_LooseEleId_L1R=
174 \item \verb=HLT_Ele17_SW_TighterEleIdIsol_L1R_v2=
175 \item \verb=HLT_Ele20_SW_L1R=
176 \item \verb=HLT_Ele22_SW_TighterEleId_L1R_v2=
177 \item \verb=HLT_Ele32_SW_TightCaloEleIdTrack_L1R_v1=
178 \item \verb=HLT_Ele32_SW_TighterEleId_L1R_v2=
179 \item \verb=HLT_Ele27_SW_TightCaloEleIdTrack_L1R_v1=
180 \item \verb=HLT_Ele22_SW_TighterCaloIdIsol_L1R_v2=
181 \item \verb=HLT_Ele22_SW_TighterEleId_L1R_v3=
182 \item \verb=HLT_Ele22_SW_TighterCaloIdIsol_L1R_v2=
183 \end{itemize}
184 \item double-electron triggers
185 \begin{itemize}
186 \item \verb=HLT_DoubleEle15_SW_L1R_v1=
187 \item \verb=HLT_DoubleEle17_SW_L1R_v1=
188 \item \verb=HLT_Ele17_SW_TightCaloEleId_Ele8HE_L1R_v1=
189 \item \verb=HLT_Ele17_SW_TightCaloEleId_SC8HE_L1R_v1=
190 \item \verb=HLT_DoubleEle10_SW_L1R=
191 \item \verb=HLT_DoubleEle5_SW_L1R=
192 \end{itemize}
193 \item e-$\mu$ cross triggers
194 \begin{itemize}
195 \item \verb=HLT_Mu5_Ele5_v1=
196 \item \verb=HLT_Mu5_Ele9_v1=
197 \item \verb=HLT_Mu11_Ele8_v1=
198 \item \verb=HLT_Mu8_Ele8_v1=
199 \item \verb=HLT_Mu5_Ele13_v2=
200 \item \verb=HLT_Mu5_Ele17_v1=
201 \end{itemize}
202 \end{itemize}