ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/eventsel.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/eventsel.tex (file contents):
Revision 1.1 by claudioc, Thu Oct 28 05:28:09 2010 UTC vs.
Revision 1.9 by claudioc, Sat Nov 6 19:51:16 2010 UTC

# Line 1 | Line 1
1   \section{Event Preselection}
2   \label{sec:eventSel}
3 < {\color{red} This needs to be fixed up -- probably many mistakes present.}\\
3 > %{\color{red} This needs to be fixed up -- probably many mistakes present.}\\
4   As mentioned in the introduction, the preselection is based on the
5   $t\bar{t}$ analysis.  We select events with two opposite sign isolated
6   leptons ($ee$, $e\mu$, or $\mu\mu$); one of the leptons must
7   have $P_T > 20$ GeV,
8 < the other one must have $P_T > 10$ GeV; there must be two JPT
9 < jets of $P_T > 30$ GeV and $|\eta| <$ xx; the sscalar sum of the
10 < $P_T$ of all such jets must excees 125 GeV; finally $\met > 50$ GeV
11 < (we use tcMet). More details are given in the subsection below.
8 > the other one must have $P_T > 10$ GeV\footnote{In case of events with
9 > more than two such leptons, we select the pair that maximizes the scalar
10 > sum of lepton $P_T$'s.};
11 > there must be two JPT
12 > jets of $P_T > 30$ GeV and $|\eta| < 2.5$; the scalar sum of the
13 > $P_T$ of all such jets must exceed 100 GeV; jets must pass
14 > {\tt caloJetId} and be separated by $\Delta R >$ 0.4 from the
15 > any lepton passing the selection described below.  
16 > {\color{red}The 11 pb iteration only does this for the two selected
17 > leptons.}
18 > Finally $\met > 50$ GeV
19 > (we use tcMet). More details are given in the subsections below.
20  
21   \subsection{Event Cleanup}
22   \label{sec:cleanup}
# Line 20 | Line 28 | least 25\% of them to be high purity.
28   \item not fake
29   \item ndof $>$ 4
30   \item $|\rho| < 2$ cm
31 < \item $|z| < ??$ cm.  
31 > \item $|z| < 24$ cm.  
32   \end{itemize}
33   \end{itemize}
34  
# Line 32 | Line 40 | Muon candidates are RECO muon objects pa
40   requirements:
41   \begin{itemize}
42  
43 < \item $|\eta| < 2.5$.
43 > \item $|\eta| < 2.4$.
44  
45   \item Global Muon and Tracker Muon.
46  
# Line 50 | Line 58 | hcal, and tracker, in a cone of 0.3.
58   \item At least one of the hits from the
59   standalone muon must be used in the global fit.
60  
61 + %\item Require tracker $\Delta P_T/P_T < 0.1$. This cut was not in the original top analysis.
62 + %It is motivated by the observation of
63 + %poorly measured muons in data with large
64 + %relative $P_T$ uncertainty, giving significant contributions to the \met.
65 + %{\color{red} This is not applied to the 11 pb iteration.}
66 +
67 +
68   \end{itemize}
69  
70  
71  
72 < \section{Electron Selection}
72 > \subsection{Electron Selection}
73   \label{sec:electron}
74  
75   Electron candidates are RECO GSF electrons passing the following
# Line 93 | Line 108 | two\cite{ref:conv}.
108   where an additional GeneralTrack is found with $Dist < 0.02$ cm
109   and $\Delta \cot \theta < 0.02$ is vetoed\cite{ref:conv}.
110  
111 < \item Cleaning for ECAL spike (aka Swiss-Cross cleaning) has been applied.
112 < {\color{red}Is this true?}
111 > \item Cleaning for ECAL spike (aka Swiss-Cross cleaning) has been applied
112 > at the reconstruction level (CMSSW 38x).
113  
114   \end{itemize}
115  
116 < \section{Trigger Selection}
116 > \subsection{Invariant mass requirement}
117 > \label{sec:zveto}
118 >
119 > We remove $e^+e^-$ and $\mu^+ \mu^-$ events with invariant
120 > mass between 76 and 106 GeV.  We also remove events
121 > with invariant mass $<$ 10 GeV.
122 >
123 > \subsection{Trigger Selection}
124   \label{sec:trigSel}
125  
126   Because most of the triggers implemented in the 2nd half of the
# Line 108 | Line 130 | Section~\ref{sec:trgEff}, a trigger effi
130   to each event, based on the trigger efficiencies measured on data.
131   Trigger efficiency weights are very close to 1.
132  
133 < For data, we require the logical OR of all (or most?) unprescaled
134 < single and double lepton triggers that were deployed during the 2010
135 < run.  These are:
136 < {\color{red} Here we need to list the triggers, somehow.}
133 > %For data, we require the logical OR of all (or most?) unprescaled
134 > %single and double lepton triggers that were deployed during the 2010
135 > %run.  These are:
136 > %{\color{red} Here we need to list the triggers, somehow.}
137 >
138 > For data, we use a cocktail of unprescaled single
139 > and double lepton triggers. An event
140 > in the $ee$ final state is required to pass at least 1
141 > single- or double-electron trigger, a
142 > $\mu\mu$ event is required to pass at least 1 single
143 > or double-muon trigger, while an $e\mu$ event
144 > is required to pass at least 1 single-muon, single-electron,
145 > or $e-\mu$ cross trigger.
146 > % We currently
147 > % do not require MC events to pass any triggers.
148  
149 + \begin{itemize}
150 + \item single-muon triggers
151 +  \begin{itemize}
152 +  \item \verb=HLT_Mu5=
153 +  \item \verb=HLT_Mu7=      
154 +  \item \verb=HLT_Mu9=        
155 +  \item \verb=HLT_Mu11=      
156 +  \item \verb=HLT_Mu13_v1=    
157 +  \item \verb=HLT_Mu15_v1=    
158 +  \item \verb=HLT_Mu17_v1=    
159 +  \item \verb=HLT_Mu19_v1=    
160 +  \end{itemize}
161 + \item double-muon triggers
162 +  \begin{itemize}
163 +  \item \verb=HLT_DoubleMu3=
164 +  \item \verb=HLT_DoubleMu3_v2=
165 +  \item \verb=HLT_DoubleMu5_v1=
166 +  \end{itemize}
167 + \item single-electron triggers
168 +  \begin{itemize}
169 +  \item \verb=HLT_Ele10_SW_EleId_L1R=
170 +  \item \verb=HLT_Ele10_LW_EleId_L1R=
171 +  \item \verb=HLT_Ele10_LW_L1R=
172 +  \item \verb=HLT_Ele10_SW_L1R=
173 +  \item \verb=HLT_Ele15_SW_CaloEleId_L1R=
174 +  \item \verb=HLT_Ele15_SW_EleId_L1R=
175 +  \item \verb=HLT_Ele15_SW_L1R=
176 +  \item \verb=HLT_Ele15_LW_L1R=
177 +  \item \verb=HLT_Ele17_SW_TightEleId_L1R=
178 +  \item \verb=HLT_Ele17_SW_TighterEleId_L1R_v1=
179 +  \item \verb=HLT_Ele17_SW_CaloEleId_L1R=
180 +  \item \verb=HLT_Ele17_SW_EleId_L1R=
181 +  \item \verb=HLT_Ele17_SW_LooseEleId_L1R=
182 +  \item \verb=HLT_Ele17_SW_TighterEleIdIsol_L1R_v2=
183 +  \item \verb=HLT_Ele20_SW_L1R=
184 +  \item \verb=HLT_Ele22_SW_TighterEleId_L1R_v2=
185 +  \item \verb=HLT_Ele32_SW_TightCaloEleIdTrack_L1R_v1=
186 +  \item \verb=HLT_Ele32_SW_TighterEleId_L1R_v2=
187 +  \item \verb=HLT_Ele27_SW_TightCaloEleIdTrack_L1R_v1=
188 +  \item \verb=HLT_Ele22_SW_TighterCaloIdIsol_L1R_v2=
189 +  \item \verb=HLT_Ele22_SW_TighterEleId_L1R_v3=
190 +  \item \verb=HLT_Ele22_SW_TighterCaloIdIsol_L1R_v2=
191 +  \end{itemize}
192 + \item double-electron triggers
193 +  \begin{itemize}
194 +  \item \verb=HLT_DoubleEle15_SW_L1R_v1=                
195 +  \item \verb=HLT_DoubleEle17_SW_L1R_v1=  
196 +  \item \verb=HLT_Ele17_SW_TightCaloEleId_Ele8HE_L1R_v1=
197 +  \item \verb=HLT_Ele17_SW_TightCaloEleId_SC8HE_L1R_v1=
198 +  \item \verb=HLT_DoubleEle10_SW_L1R=
199 +  \item \verb=HLT_DoubleEle5_SW_L1R=
200 +  \end{itemize}
201 + \item e-$\mu$ cross triggers
202 +  \begin{itemize}
203 +  \item \verb=HLT_Mu5_Ele5_v1=
204 +  \item \verb=HLT_Mu5_Ele9_v1=
205 +  \item \verb=HLT_Mu11_Ele8_v1=
206 +  \item \verb=HLT_Mu8_Ele8_v1=
207 +  \item \verb=HLT_Mu5_Ele13_v2=
208 +  \item \verb=HLT_Mu5_Ele17_v1=
209 +  \end{itemize}
210 + \end{itemize}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines