ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/eventsel.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/eventsel.tex (file contents):
Revision 1.2 by claudioc, Fri Oct 29 02:29:40 2010 UTC vs.
Revision 1.11 by claudioc, Thu Nov 11 12:34:17 2010 UTC

# Line 1 | Line 1
1   \section{Event Preselection}
2   \label{sec:eventSel}
3 < {\color{red} This needs to be fixed up -- probably many mistakes present.}\\
3 > %{\color{red} This needs to be fixed up -- probably many mistakes present.}\\
4   As mentioned in the introduction, the preselection is based on the
5   $t\bar{t}$ analysis.  We select events with two opposite sign isolated
6   leptons ($ee$, $e\mu$, or $\mu\mu$); one of the leptons must
7   have $P_T > 20$ GeV,
8 < the other one must have $P_T > 10$ GeV; there must be two JPT
9 < jets of $P_T > 30$ GeV and $|\eta| <$ xx; the sscalar sum of the
10 < $P_T$ of all such jets must excees 125 GeV; finally $\met > 50$ GeV
11 < (we use tcMet). More details are given in the subsection below.
8 > the other one must have $P_T > 10$ GeV. Events consistent with $Z$ are rejected.
9 > In case of events with
10 > more than two such leptons, we select the pair that maximizes the scalar
11 > sum of lepton $P_T$'s.
12 > There must be two JPT
13 > jets of $P_T > 30$ GeV and $|\eta| < 2.5$; the scalar sum of the
14 > $P_T$ of all such jets must exceed 100 GeV; jets must pass
15 > {\tt caloJetId} and be separated by $\Delta R >$ 0.4 from any
16 > lepton passing the selection.
17 > Finally $\met > 50$ GeV (we use tcMet). More details are given in the subsections below.
18  
19   \subsection{Event Cleanup}
20   \label{sec:cleanup}
# Line 20 | Line 26 | least 25\% of them to be high purity.
26   \item not fake
27   \item ndof $>$ 4
28   \item $|\rho| < 2$ cm
29 < \item $|z| < ??$ cm.  
29 > \item $|z| < 24$ cm.  
30   \end{itemize}
31   \end{itemize}
32  
# Line 32 | Line 38 | Muon candidates are RECO muon objects pa
38   requirements:
39   \begin{itemize}
40  
41 < \item $|\eta| < 2.5$.
41 > \item $|\eta| < 2.4$.
42  
43   \item Global Muon and Tracker Muon.
44  
# Line 50 | Line 56 | hcal, and tracker, in a cone of 0.3.
56   \item At least one of the hits from the
57   standalone muon must be used in the global fit.
58  
59 + \item Require tracker $\Delta P_T/P_T < 0.1$. This cut was not in the original top analysis.
60 + It is motivated by the observation of
61 + poorly measured muons in data with large
62 + relative $P_T$ uncertainty, giving significant contributions to the \met.
63 + %{\color{red} This is not applied to the 11 pb iteration.}
64 +
65 +
66   \end{itemize}
67  
68  
# Line 93 | Line 106 | two\cite{ref:conv}.
106   where an additional GeneralTrack is found with $Dist < 0.02$ cm
107   and $\Delta \cot \theta < 0.02$ is vetoed\cite{ref:conv}.
108  
109 < \item Cleaning for ECAL spike (aka Swiss-Cross cleaning) has been applied.
110 < {\color{red}Is this true?}
109 > \item Cleaning for ECAL spike (aka Swiss-Cross cleaning) has been applied
110 > at the reconstruction level (CMSSW 38x).
111  
112   \end{itemize}
113  
114 < \subsection{Z veto}
114 > \subsection{Invariant mass requirement}
115   \label{sec:zveto}
116  
117   We remove $e^+e^-$ and $\mu^+ \mu^-$ events with invariant
118 < mass between 76 and 105 GeV.
118 > mass between 76 and 106 GeV.  We also remove events
119 > with invariant mass $<$ 10 GeV, since this kinematical region is
120 > not well reprodced in CMS Monte Carlos.
121 >
122 > In addition, we remove $Z \to \mu\mu\gamma$
123 > candidates with the $\gamma$ collinear with one of the muons.  This is
124 > done as follows:
125 > if the ecal energy associated with one of the muons is greater than 6 GeV,
126 > we add this energy to the momentum of the initial muon, and we recompute
127 > the $\mu\mu$ mass.  If this mass is between 76 and 106 GeV, the event is rejected.
128  
129  
130   \subsection{Trigger Selection}
# Line 115 | Line 137 | Section~\ref{sec:trgEff}, a trigger effi
137   to each event, based on the trigger efficiencies measured on data.
138   Trigger efficiency weights are very close to 1.
139  
140 < For data, we require the logical OR of all (or most?) unprescaled
141 < single and double lepton triggers that were deployed during the 2010
142 < run.  These are:
143 < {\color{red} Here we need to list the triggers, somehow.}
140 > %For data, we require the logical OR of all (or most?) unprescaled
141 > %single and double lepton triggers that were deployed during the 2010
142 > %run.  These are:
143 > %{\color{red} Here we need to list the triggers, somehow.}
144 >
145 > For data, we use a cocktail of unprescaled single
146 > and double lepton triggers. An event
147 > in the $ee$ final state is required to pass at least 1
148 > single- or double-electron trigger, a
149 > $\mu\mu$ event is required to pass at least 1 single
150 > or double-muon trigger, while an $e\mu$ event
151 > is required to pass at least 1 single-muon, single-electron,
152 > or $e-\mu$ cross trigger.
153 > % We currently
154 > % do not require MC events to pass any triggers.
155 >
156 >
157 >
158 >
159  
160 +
161 +
162 +
163 +
164 + \begin{itemize}
165 + \item single-muon triggers
166 +  \begin{itemize}
167 +  \item \verb=HLT_Mu5=
168 +  \item \verb=HLT_Mu7=      
169 +  \item \verb=HLT_Mu9=        
170 +  \item \verb=HLT_Mu11=      
171 +  \item \verb=HLT_Mu13_v1=    
172 +  \item \verb=HLT_Mu15_v1=    
173 +  \item \verb=HLT_Mu17_v1=    
174 +  \item \verb=HLT_Mu19_v1=    
175 +  \end{itemize}
176 + \item double-muon triggers
177 +  \begin{itemize}
178 +  \item \verb=HLT_DoubleMu3=
179 +  \item \verb=HLT_DoubleMu3_v2=
180 +  \item \verb=HLT_DoubleMu5_v1=
181 +  \end{itemize}
182 + \item single-electron triggers
183 +  \begin{itemize}
184 +  \item \verb=HLT_Ele10_SW_EleId_L1R=
185 +  \item \verb=HLT_Ele10_LW_EleId_L1R=
186 +  \item \verb=HLT_Ele10_LW_L1R=
187 +  \item \verb=HLT_Ele10_SW_L1R=
188 +  \item \verb=HLT_Ele15_SW_CaloEleId_L1R=
189 +  \item \verb=HLT_Ele15_SW_EleId_L1R=
190 +  \item \verb=HLT_Ele15_SW_L1R=
191 +  \item \verb=HLT_Ele15_LW_L1R=
192 +  \item \verb=HLT_Ele17_SW_TightEleId_L1R=
193 +  \item \verb=HLT_Ele17_SW_TighterEleId_L1R_v1=
194 +  \item \verb=HLT_Ele17_SW_CaloEleId_L1R=
195 +  \item \verb=HLT_Ele17_SW_EleId_L1R=
196 +  \item \verb=HLT_Ele17_SW_LooseEleId_L1R=
197 +  \item \verb=HLT_Ele17_SW_TighterEleIdIsol_L1R_v2=
198 +  \item \verb=HLT_Ele20_SW_L1R=
199 +  \item \verb=HLT_Ele22_SW_TighterEleId_L1R_v2=
200 +  \item \verb=HLT_Ele32_SW_TightCaloEleIdTrack_L1R_v1=
201 +  \item \verb=HLT_Ele32_SW_TighterEleId_L1R_v2=
202 +  \item \verb=HLT_Ele27_SW_TightCaloEleIdTrack_L1R_v1=
203 +  \item \verb=HLT_Ele22_SW_TighterCaloIdIsol_L1R_v2=
204 +  \item \verb=HLT_Ele22_SW_TighterEleId_L1R_v3=
205 +  \item \verb=HLT_Ele22_SW_TighterCaloIdIsol_L1R_v2=
206 +  \end{itemize}
207 + \item double-electron triggers
208 +  \begin{itemize}
209 +  \item \verb=HLT_DoubleEle15_SW_L1R_v1=                
210 +  \item \verb=HLT_DoubleEle17_SW_L1R_v1=  
211 +  \item \verb=HLT_Ele17_SW_TightCaloEleId_Ele8HE_L1R_v1=
212 +  \item \verb=HLT_Ele17_SW_TightCaloEleId_SC8HE_L1R_v1=
213 +  \item \verb=HLT_DoubleEle10_SW_L1R=
214 +  \item \verb=HLT_DoubleEle5_SW_L1R=
215 +  \end{itemize}
216 + \item e-$\mu$ cross triggers
217 +  \begin{itemize}
218 +  \item \verb=HLT_Mu5_Ele5_v1=
219 +  \item \verb=HLT_Mu5_Ele9_v1=
220 +  \item \verb=HLT_Mu11_Ele8_v1=
221 +  \item \verb=HLT_Mu8_Ele8_v1=
222 +  \item \verb=HLT_Mu5_Ele13_v2=
223 +  \item \verb=HLT_Mu5_Ele17_v1=
224 +  \end{itemize}
225 + \end{itemize}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines