ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/eventsel.tex
Revision: 1.8
Committed: Fri Nov 5 23:07:43 2010 UTC (14 years, 6 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
Changes since 1.7: +5 -1 lines
Log Message:
more better

File Contents

# Content
1 \section{Event Preselection}
2 \label{sec:eventSel}
3 %{\color{red} This needs to be fixed up -- probably many mistakes present.}\\
4 As mentioned in the introduction, the preselection is based on the
5 $t\bar{t}$ analysis. We select events with two opposite sign isolated
6 leptons ($ee$, $e\mu$, or $\mu\mu$); one of the leptons must
7 have $P_T > 20$ GeV,
8 the other one must have $P_T > 10$ GeV\footnote{In case of events with
9 more than two such leptons, we select the pair that maximizes the scalar
10 sum of lepton $P_T$'s.};
11 there must be two JPT
12 jets of $P_T > 30$ GeV and $|\eta| < 2.5$; the scalar sum of the
13 $P_T$ of all such jets must exceed 100 GeV; jets must pass
14 {\tt caloJetId} and be separated by $\Delta R >$ 0.4 from the
15 any lepton passing the selection described below.
16 {\color{red}The 11 pb iteration only does this for the two selected
17 leptons.}
18 Finally $\met > 50$ GeV
19 (we use tcMet). More details are given in the subsections below.
20
21 \subsection{Event Cleanup}
22 \label{sec:cleanup}
23 \begin{itemize}
24 \item Scraping cut: if there are $\geq$ 10 tracks, require at
25 least 25\% of them to be high purity.
26 \item Require at least one good vertex:
27 \begin{itemize}
28 \item not fake
29 \item ndof $>$ 4
30 \item $|\rho| < 2$ cm
31 \item $|z| < 24$ cm.
32 \end{itemize}
33 \end{itemize}
34
35
36 \subsection{Muon Selection}
37 \label{sec:muon}
38
39 Muon candidates are RECO muon objects passing the following
40 requirements:
41 \begin{itemize}
42
43 \item $|\eta| < 2.4$.
44
45 \item Global Muon and Tracker Muon.
46
47 \item $\chi^2$/ndof of global fit $<$ 10.
48
49 \item At least 11 hits in the tracker fit.
50
51 \item Transverse impact parameter with respect to the beamspot $<$ 200 $\mu$m.
52
53 \item $Iso \equiv $ $E_T^{\rm iso}$/Max(20 GeV, $P_T$) $<$ 0.15.
54 $E_T^{\rm iso}$
55 is defined as the sum of transverse energy/momentum deposits in ecal,
56 hcal, and tracker, in a cone of 0.3.
57
58 \item At least one of the hits from the
59 standalone muon must be used in the global fit.
60
61 \item Require tracker $\Delta P_T/P_T < 0.1$. This cut was not in the original top analysis.
62 It is motivated by the observation of
63 poorly measured muons in data with large
64 relative $P_T$ uncertainty, giving significant contributions to the \met.
65 {\color{red} This is not applied to the 11 pb iteration.}
66
67
68 \end{itemize}
69
70
71
72 \subsection{Electron Selection}
73 \label{sec:electron}
74
75 Electron candidates are RECO GSF electrons passing the following
76 requirements:
77
78 \begin{itemize}
79
80 \item $P_T > 10$ GeV. (The $t\bar{t}$ analysis uses 20 GeV but for
81 completeness we calculate FR down to 10 GeV).
82
83 \item $|\eta| < 2.5$.
84
85 \item SuperCluster $E_T > 10$ GeV.
86
87 \item The electron must be ecal seeded.
88
89 \item VBTF90 identification\cite{ref:vbtf}.
90
91 \item Transverse impact parameter with respect to the beamspot $<$ 400 $\mu$m.
92
93 \item $Iso \equiv $ $E_T^{\rm iso}$/Max(20 GeV, $P_T$) $<$ 0.15.
94 $E_T^{\rm iso}$
95 is defined as the sum of transverse energy/momentum deposits in ecal,
96 hcal, and tracker, in a
97 cone of 0.3. A 1 GeV pedestal is subtracted from the ecal energy
98 deposition in the EB, however the ecal energy is never allowed to
99 go negative.
100
101 \item Electrons with a tracker or global muon within $\Delta R$ of
102 0.1 are vetoed.
103
104 \item The number of missing expected inner hits must be less than
105 two\cite{ref:conv}.
106
107 \item Conversion removal via partner track finding: any electron
108 where an additional GeneralTrack is found with $Dist < 0.02$ cm
109 and $\Delta \cot \theta < 0.02$ is vetoed\cite{ref:conv}.
110
111 \item Cleaning for ECAL spike (aka Swiss-Cross cleaning) has been applied
112 at the reconstruction level (CMSSW 38x).
113
114 \end{itemize}
115
116 \subsection{Invariant mass requirement}
117 \label{sec:zveto}
118
119 We remove $e^+e^-$ and $\mu^+ \mu^-$ events with invariant
120 mass between 76 and 106 GeV. We also remove events
121 with invariant mass $<$ 10 GeV.
122
123 \subsection{Trigger Selection}
124 \label{sec:trigSel}
125
126 Because most of the triggers implemented in the 2nd half of the
127 2010 run were not implemented in the Monte Carlo, no trigger
128 selection is applied on Monte Carlo data. As discussed in
129 Section~\ref{sec:trgEff}, a trigger efficiency weight is applied
130 to each event, based on the trigger efficiencies measured on data.
131 Trigger efficiency weights are very close to 1.
132
133 %For data, we require the logical OR of all (or most?) unprescaled
134 %single and double lepton triggers that were deployed during the 2010
135 %run. These are:
136 %{\color{red} Here we need to list the triggers, somehow.}
137
138 For data, we use a cocktail of unprescaled single
139 and double lepton triggers. An event
140 in the $ee$ final state is required to pass at least 1
141 single- or double-electron trigger, a
142 $\mu\mu$ event is required to pass at least 1 single
143 or double-muon trigger, while an $e\mu$ event
144 is required to pass at least 1 single-muon, single-electron,
145 or $e-\mu$ cross trigger.
146 % We currently
147 % do not require MC events to pass any triggers.
148
149 \begin{itemize}
150 \item single-muon triggers
151 \begin{itemize}
152 \item \verb=HLT_Mu5=
153 \item \verb=HLT_Mu7=
154 \item \verb=HLT_Mu9=
155 \item \verb=HLT_Mu11=
156 \item \verb=HLT_Mu13_v1=
157 \item \verb=HLT_Mu15_v1=
158 \item \verb=HLT_Mu17_v1=
159 \item \verb=HLT_Mu19_v1=
160 \end{itemize}
161 \item double-muon triggers
162 \begin{itemize}
163 \item \verb=HLT_DoubleMu3=
164 \item \verb=HLT_DoubleMu3_v2=
165 \item \verb=HLT_DoubleMu5_v1=
166 \end{itemize}
167 \item single-electron triggers
168 \begin{itemize}
169 \item \verb=HLT_Ele10_SW_EleId_L1R=
170 \item \verb=HLT_Ele10_LW_EleId_L1R=
171 \item \verb=HLT_Ele10_LW_L1R=
172 \item \verb=HLT_Ele10_SW_L1R=
173 \item \verb=HLT_Ele15_SW_CaloEleId_L1R=
174 \item \verb=HLT_Ele15_SW_EleId_L1R=
175 \item \verb=HLT_Ele15_SW_L1R=
176 \item \verb=HLT_Ele15_LW_L1R=
177 \item \verb=HLT_Ele17_SW_TightEleId_L1R=
178 \item \verb=HLT_Ele17_SW_TighterEleId_L1R_v1=
179 \item \verb=HLT_Ele17_SW_CaloEleId_L1R=
180 \item \verb=HLT_Ele17_SW_EleId_L1R=
181 \item \verb=HLT_Ele17_SW_LooseEleId_L1R=
182 \item \verb=HLT_Ele17_SW_TighterEleIdIsol_L1R_v2=
183 \item \verb=HLT_Ele20_SW_L1R=
184 \item \verb=HLT_Ele22_SW_TighterEleId_L1R_v2=
185 \item \verb=HLT_Ele32_SW_TightCaloEleIdTrack_L1R_v1=
186 \item \verb=HLT_Ele32_SW_TighterEleId_L1R_v2=
187 \item \verb=HLT_Ele27_SW_TightCaloEleIdTrack_L1R_v1=
188 \item \verb=HLT_Ele22_SW_TighterCaloIdIsol_L1R_v2=
189 \item \verb=HLT_Ele22_SW_TighterEleId_L1R_v3=
190 \item \verb=HLT_Ele22_SW_TighterCaloIdIsol_L1R_v2=
191 \end{itemize}
192 \item double-electron triggers
193 \begin{itemize}
194 \item \verb=HLT_DoubleEle15_SW_L1R_v1=
195 \item \verb=HLT_DoubleEle17_SW_L1R_v1=
196 \item \verb=HLT_Ele17_SW_TightCaloEleId_Ele8HE_L1R_v1=
197 \item \verb=HLT_Ele17_SW_TightCaloEleId_SC8HE_L1R_v1=
198 \item \verb=HLT_DoubleEle10_SW_L1R=
199 \item \verb=HLT_DoubleEle5_SW_L1R=
200 \end{itemize}
201 \item e-$\mu$ cross triggers
202 \begin{itemize}
203 \item \verb=HLT_Mu5_Ele5_v1=
204 \item \verb=HLT_Mu5_Ele9_v1=
205 \item \verb=HLT_Mu11_Ele8_v1=
206 \item \verb=HLT_Mu8_Ele8_v1=
207 \item \verb=HLT_Mu5_Ele13_v2=
208 \item \verb=HLT_Mu5_Ele17_v1=
209 \end{itemize}
210 \end{itemize}