ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/eventsel.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/eventsel.tex (file contents):
Revision 1.4 by claudioc, Mon Nov 1 17:52:52 2010 UTC vs.
Revision 1.13 by benhoob, Thu Nov 11 16:32:30 2010 UTC

# Line 1 | Line 1
1   \section{Event Preselection}
2   \label{sec:eventSel}
3 < {\color{red} This needs to be fixed up -- probably many mistakes present.}\\
4 < As mentioned in the introduction, the preselection is based on the
5 < $t\bar{t}$ analysis.  We select events with two opposite sign isolated
3 > The purpose of the preselection is to define a data sample rich
4 > in $t\bar{t} \to$ dileptons.  We compare the kinematical
5 > properties of this sample with expectations from $t\bar{t}$
6 > Monte Carlo.
7 >
8 > The preselection is based on the
9 > $t\bar{t}$ analysis~\cite{ref:top}.  
10 > We select events with two opposite sign, well-identified and isolated
11   leptons ($ee$, $e\mu$, or $\mu\mu$); one of the leptons must
12   have $P_T > 20$ GeV,
13 < the other one must have $P_T > 10$ GeV; there must be two JPT
14 < jets of $P_T > 30$ GeV and $|\eta| <$ {\color{red} xx}; the scalar sum of the
15 < $P_T$ of all such jets must exceed 100 GeV; finally $\met > 50$ GeV
16 < (we use tcMet). More details are given in the subsection below.
13 > the other one must have $P_T > 10$ GeV. Events with dilepton mass
14 > consistent with $Z \to ee/\mu\mu$ are rejected.
15 > In case of events with
16 > more than two such leptons, we select the pair that maximizes the scalar
17 > sum of lepton $P_T$'s.
18 > There must be two JPT
19 > jets of $P_T > 30$ GeV and $|\eta| < 2.5$; the scalar sum of the
20 > $P_T$ of all such jets must exceed 100 GeV; jets must pass
21 > {\tt caloJetId} and be separated by $\Delta R >$ 0.4 from any
22 > lepton passing the selection.
23 > Finally $\met > 50$ GeV (we use tcMet). More details are given in the subsections below.
24  
25   \subsection{Event Cleanup}
26   \label{sec:cleanup}
# Line 32 | Line 44 | Muon candidates are RECO muon objects pa
44   requirements:
45   \begin{itemize}
46  
47 < \item $|\eta| < 2.5$.
47 > \item $|\eta| < 2.4$.
48  
49   \item Global Muon and Tracker Muon.
50  
# Line 50 | Line 62 | hcal, and tracker, in a cone of 0.3.
62   \item At least one of the hits from the
63   standalone muon must be used in the global fit.
64  
65 + \item Require tracker $\Delta P_T/P_T < 0.1$. This cut was not in the original top analysis.
66 + It is motivated by the observation of
67 + poorly measured muons in data with large
68 + relative $P_T$ uncertainty, giving significant contributions to the \met.
69 + %{\color{red} This is not applied to the 11 pb iteration.}
70 +
71 +
72   \end{itemize}
73  
74  
# Line 62 | Line 81 | requirements:
81  
82   \begin{itemize}
83  
84 < \item $P_T > 10$ GeV.  (The $t\bar{t}$ analysis uses 20 GeV but for
85 < completeness we calculate FR down to 10 GeV).
84 > % \item $P_T > 10$ GeV.  (The $t\bar{t}$ analysis uses 20 GeV but for
85 > % completeness we calculate FR down to 10 GeV).
86  
87   \item $|\eta| < 2.5$.
88  
# Line 98 | Line 117 | at the reconstruction level (CMSSW 38x).
117  
118   \end{itemize}
119  
120 < \subsection{Z veto}
120 > \subsection{Invariant mass requirement}
121   \label{sec:zveto}
122  
123   We remove $e^+e^-$ and $\mu^+ \mu^-$ events with invariant
124 < mass between 76 and 106 GeV.
124 > mass between 76 and 106 GeV.  We also remove events
125 > with invariant mass $<$ 10 GeV, since this kinematical region is
126 > not well reprodced in CMS Monte Carlos.
127 >
128 > In addition, we remove $Z \to \mu\mu\gamma$
129 > candidates with the $\gamma$ collinear with one of the muons.  This is
130 > done as follows:
131 > if the ecal energy associated with one of the muons is greater than 6 GeV,
132 > we add this energy to the momentum of the initial muon, and we recompute
133 > the $\mu\mu$ mass.  If this mass is between 76 and 106 GeV, the event is rejected.
134  
135  
136   \subsection{Trigger Selection}
137   \label{sec:trigSel}
138  
139   Because most of the triggers implemented in the 2nd half of the
140 < 2010 run were not implemented in the Monte Carlo, no trigger
141 < selection is applied on Monte Carlo data.  As discussed in
140 > 2010 run were not implemented in the Monte Carlo,
141 > we do not make any requirements on HLT bits in the Monte Carlo.
142 > Instead, as discussed in
143   Section~\ref{sec:trgEff}, a trigger efficiency weight is applied
144   to each event, based on the trigger efficiencies measured on data.
145   Trigger efficiency weights are very close to 1.
146  
147 < For data, we require the logical OR of all (or most?) unprescaled
148 < single and double lepton triggers that were deployed during the 2010
149 < run.  These are:
150 < {\color{red} Here we need to list the triggers, somehow.}
147 > %For data, we require the logical OR of all (or most?) unprescaled
148 > %single and double lepton triggers that were deployed during the 2010
149 > %run.  These are:
150 > %{\color{red} Here we need to list the triggers, somehow.}
151 >
152 > For data, we use a cocktail of unprescaled single
153 > and double lepton triggers. An event
154 > in the $ee$ final state is required to pass at least 1
155 > single- or double-electron trigger, a
156 > $\mu\mu$ event is required to pass at least 1 single
157 > or double-muon trigger, while an $e\mu$ event
158 > is required to pass at least 1 single-muon, single-electron,
159 > or $e-\mu$ cross trigger.
160 > % We currently
161 > % do not require MC events to pass any triggers.
162 >
163 >
164 >
165 >
166  
167 +
168 +
169 +
170 +
171 + \begin{itemize}
172 + \item single-muon triggers
173 +  \begin{itemize}
174 +  \item \verb=HLT_Mu5=
175 +  \item \verb=HLT_Mu7=      
176 +  \item \verb=HLT_Mu9=        
177 +  \item \verb=HLT_Mu11=      
178 +  \item \verb=HLT_Mu13_v1=    
179 +  \item \verb=HLT_Mu15_v1=    
180 +  \item \verb=HLT_Mu17_v1=    
181 +  \item \verb=HLT_Mu19_v1=    
182 +  \end{itemize}
183 + \item double-muon triggers
184 +  \begin{itemize}
185 +  \item \verb=HLT_DoubleMu3=
186 +  \item \verb=HLT_DoubleMu3_v2=
187 +  \item \verb=HLT_DoubleMu5_v1=
188 +  \end{itemize}
189 + \item single-electron triggers
190 +  \begin{itemize}
191 +  \item \verb=HLT_Ele10_SW_EleId_L1R=
192 +  \item \verb=HLT_Ele10_LW_EleId_L1R=
193 +  \item \verb=HLT_Ele10_LW_L1R=
194 +  \item \verb=HLT_Ele10_SW_L1R=
195 +  \item \verb=HLT_Ele15_SW_CaloEleId_L1R=
196 +  \item \verb=HLT_Ele15_SW_EleId_L1R=
197 +  \item \verb=HLT_Ele15_SW_L1R=
198 +  \item \verb=HLT_Ele15_LW_L1R=
199 +  \item \verb=HLT_Ele17_SW_TightEleId_L1R=
200 +  \item \verb=HLT_Ele17_SW_TighterEleId_L1R_v1=
201 +  \item \verb=HLT_Ele17_SW_CaloEleId_L1R=
202 +  \item \verb=HLT_Ele17_SW_EleId_L1R=
203 +  \item \verb=HLT_Ele17_SW_LooseEleId_L1R=
204 +  \item \verb=HLT_Ele17_SW_TighterEleIdIsol_L1R_v2=
205 +  \item \verb=HLT_Ele20_SW_L1R=
206 +  \item \verb=HLT_Ele22_SW_TighterEleId_L1R_v2=
207 +  \item \verb=HLT_Ele32_SW_TightCaloEleIdTrack_L1R_v1=
208 +  \item \verb=HLT_Ele32_SW_TighterEleId_L1R_v2=
209 +  \item \verb=HLT_Ele27_SW_TightCaloEleIdTrack_L1R_v1=
210 +  \item \verb=HLT_Ele22_SW_TighterCaloIdIsol_L1R_v2=
211 +  \item \verb=HLT_Ele22_SW_TighterEleId_L1R_v3=
212 +  \item \verb=HLT_Ele22_SW_TighterCaloIdIsol_L1R_v2=
213 +  \end{itemize}
214 + \item double-electron triggers
215 +  \begin{itemize}
216 +  \item \verb=HLT_DoubleEle15_SW_L1R_v1=                
217 +  \item \verb=HLT_DoubleEle17_SW_L1R_v1=  
218 +  \item \verb=HLT_Ele17_SW_TightCaloEleId_Ele8HE_L1R_v1=
219 +  \item \verb=HLT_Ele17_SW_TightCaloEleId_SC8HE_L1R_v1=
220 +  \item \verb=HLT_DoubleEle10_SW_L1R=
221 +  \item \verb=HLT_DoubleEle5_SW_L1R=
222 +  \end{itemize}
223 + \item e-$\mu$ cross triggers
224 +  \begin{itemize}
225 +  \item \verb=HLT_Mu5_Ele5_v1=
226 +  \item \verb=HLT_Mu5_Ele9_v1=
227 +  \item \verb=HLT_Mu11_Ele8_v1=
228 +  \item \verb=HLT_Mu8_Ele8_v1=
229 +  \item \verb=HLT_Mu5_Ele13_v2=
230 +  \item \verb=HLT_Mu5_Ele17_v1=
231 +  \end{itemize}
232 + \end{itemize}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines