ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/limit.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/limit.tex (file contents):
Revision 1.32 by claudioc, Thu Jan 13 05:53:16 2011 UTC vs.
Revision 1.37 by claudioc, Fri Jan 21 03:47:11 2011 UTC

# Line 148 | Line 148 | the underlying physics.
148   % limit: less than     4.689 signal events
149  
150  
151 +
152   \subsection{mSUGRA scan}
153   \label{sec:mSUGRA}
154   We also perform a scan of the mSUGRA parameter space, as recomended
# Line 163 | Line 164 | Fastsim and Fullsim are compatible.  To
164   expected yield for the LM1 point in FullSim (3.56 $\pm$ 0.06) and
165   FastSim (3.29 $\pm$ 0.27), where the uncertainties are statistical only.
166   These two numbers are in agreement, which gives us confidence in
167 < usinf FastSim for this study.
167 > using FastSim for this study.
168  
169   The FastSim events are generated with different values of $m_0$
170   and $m_{1/2}$ in steps of 10 GeV.  For each point in the
# Line 181 | Line 182 | using the method described in Section~\r
182   \item A 5\% uncertainty due to lepton efficiencies
183   \item An uncertaity on the NLO cross-section obtained by varying the
184   factorization and renormalization scale by a factor of two\cite{ref:sanjay}.
185 < \item The PDF uncertainty on the product of cross-section and acceptance
186 < calculated using the method of Reference~\cite{ref:pdf}.
185 > \item A 13\% PDF uncertainty on the product of cross-section and acceptance.
186 > This uncertainty was calculated using the method of Reference~\cite{ref:pdf} for a
187 > number of points in the $m_0$ vs. $m_{1/2}$ plane, and was found to be
188 > approximately independent of mSUGRA parameters, see Table~\ref{tab:pdf}.
189   \end{itemize}
190   \item We use the ``log-normal'' model for the nuisance parameters
191   in cl95cms
192   \end{itemize}
193 + We actually calculate three different values of $N_{UL}$:
194 + \begin{enumerate}
195 + \item Observed $N_{UL}$ asssuming the NLO cross-section.
196 + \item Observed $N_{UL}$ asssuming the LO cross-section. In this case
197 + uncertainties due to PDFs and renormlization/factorization scales are not
198 + included.
199 + \item Expected $N_{UL}$ sssuming the NLO cross-section.  This is
200 + calculated using the the CLA function also available in cl95cms.
201 + \end{enumerate}
202 +
203 + \begin{table}[hbt]
204 + \begin{center}
205 + \caption{\label{tab:pdf} PDF uncertainties on the product of
206 + cross-section and acceptance for a number of representative points
207 + in the mSUGRA plane.}
208 + \begin{tabular}{c|c|c|c|c|c}
209 + $\tan\beta$ & $m_0$ & $m_{1/2}$ & sign of $\mu$ & $A_0$ & uncertanity (\%)   \\ \hline
210 + 3           & 50    & 260       & +             &  0    & $^{+13}_{-9}$ \\
211 + 3           & 50    & 270       & +             &  0    & $^{+13}_{-9}$ \\
212 + 3           & 60    & 260       & +             &  0    & $^{+14}_{-9}$ \\
213 + 3           & 200   & 200       & +             &  0    & $^{+12}_{-9}$ \\
214 + 3           & 200   & 210       & +             &  0    & $^{+13}_{-10}$ \\
215 + 3           & 210   & 200       & +             &  0    & $^{+11}_{-8}$ \\
216 + 3           & 200   & 140       & +             &  0    & $^{+16}_{-12}$ \\
217 + 3           & 140   & 150       & +             &  0    & $^{+08}_{-8}$ \\
218 + 3           & 150   & 140       & +             &  0    & $^{+14}_{-10}$ \\
219 + 10          & 60    & 260       & +             &  0    & $^{+16}_{-11}$ \\
220 + 10          & 100   & 260       & +             &  0    & $^{+14}_{-10}$ \\
221 + 10          & 100   & 260       & +             &  0    & $^{+12}_{-9}$ \\
222 + 10          & 90    & 260       & +             &  0    & $^{+15}_{-10}$ \\
223 + 10          & 240   & 260       & +             &  0    & $^{+10}_{-8}$ \\
224 + 10          & 240   & 260       & +             &  0    & $^{+13}_{-10}$  \\ \hline
225 + \end{tabular}
226 + \end{center}
227 + \end{table}
228 +
229  
230   An mSUGRA point is excluded if the resulting $N_{UL}$ is smaller
231   than the expected number of events.  Because of the quantization
232   of the available MC points in the $m_0$ vs $m_{1/2}$ plane, the
233 < boundaries of the excluded region are also quantized.  We smooth
234 < the boundaries using the method recommended by the SUSY
235 < group\cite{ref:smooth}.  In addition, we show a limit
236 < curve based on the LO cross-section, as well as the
237 < ``expected'' limit curve.  The expected limit curve is
238 < calculated using the CLA function also available in cl95cms.
239 < The results are shown in Figure~\ref{fig:msugra}
233 > boundaries of the excluded region are also quantized.  The excluded points
234 > are shown in Figure~\ref{fig:tanbeta3raw}; in this Figure we also show
235 > ad-hoc curves that represent the excluded regions.
236 > In Figure~\ref{fig:msugra} we show our results compared with
237 > results from previous experiments.
238 >
239 >
240 > \begin{figure}[tbh]
241 > \begin{center}
242 > \includegraphics[width=0.4\linewidth]{tanbeta3_NLO_observed.png}
243 > \includegraphics[width=0.4\linewidth]{tanbeta3_NLO_expected.png}
244 > \includegraphics[width=0.4\linewidth]{tanbeta3_LO_observed.png}
245 > \caption{\label{fig:tanbeta3raw}\protect Excluded points in the
246 > $m_0$ vs. $m_{1/2}$ plane for $\tan\beta=3$, sign of $\mu = +$ and $A_{0}=0$~GeVs.
247 > Top left: observed, using the NLO cross-section.
248 > Top right: expected using the NLO cross-section.
249 > Bottom left: observed, using the LO cross-section.
250 > The curves are meant to represent the excluded regions.}
251 > \end{center}
252 > \end{figure}
253  
254  
255   \begin{figure}[tbh]
256   \begin{center}
257   \includegraphics[width=\linewidth]{exclusion.pdf}
258   \caption{\label{fig:msugra}\protect Exclusion curves in the mSUGRA parameter space,
259 < assuming $\tan\beta=3$, sign of $\mu = +$ and $A_{0}=0$~GeVs.  THIS IS STILL MISSING
208 < THE PDF UNCERTAINTIES.}
259 > assuming $\tan\beta=3$, sign of $\mu = +$ and $A_{0}=0$~GeVs.}  
260   \end{center}
261   \end{figure}
262  
263  
264 +
265 + \clearpage
266 +
267   \subsubsection{Check of the nuisance parameter models}
268   We repeat the procedure outlined above but changing the
269   lognormal nuisance parameter model to a gaussian or
# Line 221 | Line 275 | show the raw results, without smoothing)
275   \begin{figure}[tbh]
276   \begin{center}
277   \includegraphics[width=0.5\linewidth]{nuissance.png}
278 < \caption{\label{fig:nuisance}\protect Exclusion curves in the
278 > \caption{\label{fig:nuisance}\protect Observed NLO exclusion curves in the
279   mSUGRA parameter space,
280   assuming $\tan\beta=3$, sign of $\mu = +$ and $A_{0}=0$~GeVs
281 < using different models for the nuisance parameters.
282 < Red:gaussian.  Blue:lognormal or gamma.  
229 < THIS IS STILL MISSING
230 < THE PDF UNCERETAINTIES.  MAYBE GOOD TO MAKE THIS PLOT A BIT
231 < PRETTIER, EG, CANNOT DISTINGUISH THINGS WHEN USING BLACK AND
232 < WHITE PRINTER}
281 > using different models for the nuisance parameters. (Note: this
282 > plot was made without the PDF uncertainties.}
283   \end{center}
284   \end{figure}
285  
286 < We find that the set of excluded points is identical for the
287 < lognormal and gamma models.  There are small differences for the
288 < gaussian model. Following the recommendation of Reference~\cite{ref:cousins},
289 < we use the lognormal nuisance parameter model.
286 > We find that different assumptions on the PDFs for the nuisance
287 > parameters make very small differences to the set of excluded
288 > points.
289 > Following the recommendation of Reference~\cite{ref:cousins},
290 > we use the lognormal nuisance parameter model as the default.
291  
292  
293 < \clearpage
293 > % \clearpage
294  
295  
296   \subsubsection{Effect of signal contamination}
297   \label{sec:contlimit}
298 +
299   Signal contamination could affect the limit by inflating the
300   background expectation.  In our case we see no evidence of signal
301   contamination, within statistics.
# Line 262 | Line 314 | the data driven methods as confirmations
314  
315   Nevertheless, here we explore the possible effect of
316   signal contamination.  The procedure suggested to us
317 < is the following:
266 < \begin{itemize}
267 < \item At each point in mSUGRA space we modify the
317 > for the ABCD method is to modify the
318   ABCD background prediction from $A_D \cdot C_D/B_D$ to
319   $(A_D-A_S) \cdot (C_D-C_S) / (B_D - B_S)$, where the
320 < subscripts $D$ and $S$ referes to the number of observed data
320 > subscripts $D$ and $S$ refer to the number of observed data
321   events and expected SUSY events, respectively, in a given region.
322 < \item Similarly, at each point in mSugra space we modify the
323 < $P_T(\ell\ell)$ background prediction from
324 < $K \cdot K_C \cdot D'_D$ to $K \cdot K_C \cdot (D'_D - D'_S)$,
325 < where the subscript $D$ and $S$ are defined as above.
326 < \item At each point in mSUGRA space we recalculate $N_{UL}$
327 < using the weighted average of the modified $ABCD$ and
278 < $P_T(\ell\ell)$ method predictions.  
279 < \end{itemize}
280 <
281 < \noindent This procedure results in a reduced background prediction,
282 < and therefore a less stringent $N_{UL}$.  
322 > We then recalculate $N_{UL}$ at each point using this modified
323 > ABCD background estimation.  For simplicity we ignore
324 > information from the $P_T(\ell \ell)$
325 > background estimation.  This is conservative, since
326 > the $P_T(\ell\ell)$ background estimation happens to
327 > be numerically larger than the one from ABCD.
328  
329   Note, however, that in some cases this procedure is
330   nonsensical.  For example, take LM0 as a SUSY
# Line 293 | Line 338 | LM0 hypothesis.  Instead, we now get a n
338   BG prediction (which is nonsense, so we set it to zero),
339   and therefore a weaker limit.
340  
341 +
342 +
343 +
344   \begin{figure}[tbh]
345   \begin{center}
346   \includegraphics[width=0.5\linewidth]{sigcont.png}
347 < \caption{\label{fig:sigcont}\protect Exclusion curves in the
347 > \caption{\label{fig:sigcont}\protect Observed NLO exclusion curves in the
348   mSUGRA parameter space,
349   assuming $\tan\beta=3$, sign of $\mu = +$ and $A_{0}=0$~GeVs
350 < with (blue) and without (red) the effects of signal contamination.
351 < THIS IS STILL MISSING
304 < THE PDF UNCERETAINTIES.  MAYBE GOOD TO MAKE THIS PLOT A BIT
305 < PRETTIER, EG, CANNOT DISTINGUISH THINGS WHEN USING BLACK AND
306 < WHITE PRINTER}
350 > with and without the effects of signal contamination.
351 > Note: PDF uncertainties are not included.}  
352   \end{center}
353   \end{figure}
354  
355 < Despite these reservations, we follow the procedure suggested
356 < to us.  A comparison of the exclusion region with and without
312 < the signal contamination is shown in Figure~\ref{fig:sigcont}
355 > A comparison of the exclusion region with and without
356 > signal contamination is shown in Figure~\ref{fig:sigcont}
357   (with no smoothing).  The effect of signal contamination is
358 < small.
358 > small, of the same order as the quantization of the scan.
359 >
360  
361   \subsubsection{mSUGRA scans with different values of tan$\beta$}
362   \label{sec:tanbetascan}
363  
364 < For completeness, we also show the exclusion regions calculated
365 < using $\tan\beta = 10$ and $\tan\beta = 50$.
364 > For completeness, we also show the exclusion region calculated
365 > using $\tan\beta = 10$ (Figure~\ref{fig:msugratb10}).
366 >
367 >
368 > \begin{figure}[tbh]
369 > \begin{center}
370 > \includegraphics[width=0.4\linewidth]{tanbeta10_NLO_observed.png}
371 > \caption{\label{fig:tanbeta10raw}\protect Excluded points in the
372 > $m_0$ vs. $m_{1/2}$ plane for $\tan\beta=10$, sign of $\mu = +$ and $A_{0}=0$~GeVs.
373 > This plot is made using the NLO cross-sections.
374 > The curves is meant to represent the excluded region.}
375 > \end{center}
376 > \end{figure}
377 >
378 > \begin{figure}[tbh]
379 > \begin{center}
380 > \includegraphics[width=\linewidth]{exclusion_tanbeta10.pdf}
381 > \caption{\label{fig:msugratb10}\protect Exclusion curve in the mSUGRA parameter space,
382 > assuming $\tan\beta=10$, sign of $\mu = +$ and $A_{0}=0$~GeVs.}  
383 > \end{center}
384 > \end{figure}
385  
322 NOT DONE YET.  HERE I SUGGEST THAT WE PUT 3 CURVES (NLO LIMITS,
323 NO SIGNAL CONTAMINATION) ON THE SAME M0-M1/2 PLOT PERHAPS
324 LEAVING OUT THE REGIONS EXCLUDED BY OTHER EXPERIMENTS.
386  
387  
388  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines