ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/limit.tex
Revision: 1.37
Committed: Fri Jan 21 03:47:11 2011 UTC (14 years, 3 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
CVS Tags: FR1, HEAD
Changes since 1.36: +85 -35 lines
Log Message:
better msugra scans

File Contents

# User Rev Content
1 claudioc 1.1 \section{Limit on new physics}
2     \label{sec:limit}
3 claudioc 1.2
4 claudioc 1.10 %{\bf \color{red} The numbers in this Section need to be double checked.}
5 claudioc 1.2
6 claudioc 1.32 \subsection{Limit on number of events}
7     \label{sec:limnumevents}
8 claudioc 1.2 As discussed in Section~\ref{sec:results}, we see one event
9     in the signal region, defined as SumJetPt$>$300 GeV and
10     \met/$\sqrt{\rm SumJetPt}>8.5$ GeV$^{\frac{1}{2}}$.
11    
12 benhoob 1.22 The background prediction from the SM Monte Carlo is 1.3 events.
13 benhoob 1.15 %, where the uncertainty comes from
14     %the jet energy scale (30\%, see Section~\ref{sec:systematics}),
15     %the luminosity (10\%), and the lepton/trigger
16     %efficiency (10\%)\footnote{Other uncertainties associated with
17     %the modeling of $t\bar{t}$ in MadGraph have not been evaluated.
18     %The uncertainty on $pp \to \sigma(t\bar{t})$ is also not included.}.
19 claudioc 1.2 The data driven background predictions from the ABCD method
20 benhoob 1.22 and the $P_T(\ell\ell)$ method are $1.3 \pm 0.8({\rm stat}) \pm 0.3({\rm syst})$
21     and $2.1 \pm 2.1({\rm stat}) \pm 0.6({\rm syst})$, respectively.
22 claudioc 1.2
23     These three predictions are in good agreement with each other
24     and with the observation of one event in the signal region.
25 benhoob 1.5 We calculate a Bayesian 95\% CL upper limit\cite{ref:bayes.f}
26 benhoob 1.17 on the number of non SM events in the signal region to be 4.1.
27 claudioc 1.32 We have also calculated this limit using
28     % a profile likelihood method
29     % as implemented in
30     the cl95cms software\cite{ref:cl95cms},
31     and we also find 4.1. (This is not surprising, since cl95cms
32     also gives baysean upper limits with a flat prior).
33 benhoob 1.22 These limits were calculated using a background prediction of $N_{BG} = 1.4 \pm 0.8$
34     events, the error-weighted average of the ABCD and $P_T(\ell\ell)$ background
35     predictions. The upper limit is not very sensitive to the choice of
36 claudioc 1.2 $N_{BG}$ and its uncertainty.
37    
38     To get a feeling for the sensitivity of this search to some
39     popular SUSY models, we remind the reader of the number of expected
40 benhoob 1.22 LM0 and LM1 events from Table~\ref{tab:sigcont}: $8.6 \pm 1.6$
41     events and $3.6 \pm 0.5$ events respectively, where the uncertainties
42 claudioc 1.2 are from energy scale (Section~\ref{sec:systematics}), luminosity,
43 benhoob 1.23 and lepton efficiency.
44    
45 claudioc 1.2
46 claudioc 1.32 \subsection{Outreach}
47     \label{sec:outreach}
48 claudioc 1.10 Conveying additional useful information about the results of
49     a generic ``signature-based'' search such as the one described
50 claudioc 1.32 in this note is a difficult issue.
51     Here we attempt to present our result in the most general
52     way.
53 claudioc 1.10
54 claudioc 1.32 Models of new physics in the dilepton final state
55 claudioc 1.10 can be confronted in an approximate way by simple
56     generator-level studies that
57 benhoob 1.23 compare the expected number of events in 34.0~pb$^{-1}$
58 claudioc 1.10 with our upper limit of 4.1 events. The key ingredients
59     of such studies are the kinematical cuts described
60     in this note, the lepton efficiencies, and the detector
61 benhoob 1.21 responses for SumJetPt and \met/$\sqrt{\rm SumJetPt}$.
62 claudioc 1.10 The muon identification efficiency is $\approx 95\%$;
63     the electron identification efficiency varies from $\approx$ 63\% at
64     $P_T = 10$ GeV to 91\% for $P_T > 30$ GeV. The isolation
65     efficiency in top events varies from $\approx 83\%$ (muons)
66     and $\approx 89\%$ (electrons) at $P_T=10$ GeV to
67 benhoob 1.30 $\approx 95\%$ for $P_T>60$ GeV.
68     %{\bf \color{red} The following numbers were derived from Fall 10 samples. }
69 dbarge 1.29 The average detector
70 claudioc 1.10 responses for SumJetPt and $\met/\sqrt{\rm SumJetPt}$ are
71 claudioc 1.31 $1.02 \pm 0.05$ and $0.94 \pm 0.05$ respectively, where
72 claudioc 1.10 the uncertainties are from the jet energy scale uncertainty.
73 dbarge 1.28 The experimental resolutions on these quantities are 11\% and
74     16\% respectively.
75 claudioc 1.10
76     To justify the statements in the previous paragraph
77     about the detector responses, we plot
78     in Figure~\ref{fig:response} the average response for
79 claudioc 1.8 SumJetPt and \met/$\sqrt{\rm SumJetPt}$ in MC, as well as the
80     efficiency for the cuts on these quantities used in defining the
81 claudioc 1.9 signal region.
82     % (SumJetPt $>$ 300 GeV and \met/$\sqrt{\rm SumJetPt} > 8.5$
83     % Gev$^{\frac{1}{2}}$).
84 benhoob 1.30 %{\bf \color{red} The following numbers were derived from Fall10 samples }
85 claudioc 1.9 We find that the average SumJetPt response
86 claudioc 1.31 in the Monte Carlo is about 1.02, with an RMS of order 11\% while
87     the response of \met/$\sqrt{\rm SumJetPt}$ is approximately 0.94 with an
88 dbarge 1.28 RMS of 16\%.
89 claudioc 1.8
90 claudioc 1.10 %Using this information as well as the kinematical
91     %cuts described in Section~\ref{sec:eventSel} and the lepton efficiencies
92     %of Figures~\ref{fig:effttbar}, one should be able to confront
93     %any existing or future model via a relatively simple generator
94     %level study by comparing the expected number of events in 35 pb$^{-1}$
95     %with our upper limit of 4.1 events.
96 claudioc 1.8
97     \begin{figure}[tbh]
98     \begin{center}
99 dbarge 1.25 \includegraphics[width=\linewidth]{selectionEffDec10.png}
100 claudioc 1.8 \caption{\label{fig:response} Left plots: the efficiencies
101     as a function of the true quantities for the SumJetPt (top) and
102     tcMET/$\sqrt{\rm SumJetPt}$ (bottom) requirements for the signal
103     region as a function of their true values. The value of the
104     cuts is indicated by the vertical line.
105     Right plots: The average response and its RMS for the SumJetPt
106     (top) and tcMET/$\sqrt{\rm SumJetPt}$ (bottom) measurements.
107     The response is defined as the ratio of the reconstructed quantity
108     to the true quantity in MC. These plots are done using the LM0
109     Monte Carlo, but they are not expected to depend strongly on
110 benhoob 1.20 the underlying physics.
111 benhoob 1.30 %{\bf \color{red} These plots were made with Fall10 samples. }
112     }
113 claudioc 1.8 \end{center}
114     \end{figure}
115 benhoob 1.22
116    
117    
118     %%% Nominal
119     % -----------------------------------------
120     % observed events 1
121     % relative error on acceptance 0.000
122     % expected background 1.400
123     % absolute error on background 0.770
124     % desired confidence level 0.95
125     % integration upper limit 30.00
126     % integration step size 0.0100
127     % -----------------------------------------
128     % Are the above correct? y
129     % 1 16.685 0.29375E-06
130     %
131     % limit: less than 4.112 signal events
132    
133    
134    
135     %%% Add 20% acceptance uncertainty based on LM0
136     % -----------------------------------------
137     % observed events 1
138     % relative error on acceptance 0.200
139     % expected background 1.400
140     % absolute error on background 0.770
141     % desired confidence level 0.95
142     % integration upper limit 30.00
143     % integration step size 0.0100
144     % -----------------------------------------
145     % Are the above correct? y
146     % 1 29.995 0.50457E-06
147     %
148 dbarge 1.25 % limit: less than 4.689 signal events
149 claudioc 1.32
150    
151 claudioc 1.37
152 claudioc 1.32 \subsection{mSUGRA scan}
153     \label{sec:mSUGRA}
154     We also perform a scan of the mSUGRA parameter space, as recomended
155     by the SUSY group convenors\cite{ref:scan}.
156     The goal of the scan is to determine an exclusion region in the
157     $m_0$ vs. $m_{1/2}$ plane for
158     $\tan\beta=3$,
159     sign of $\mu = +$, and $A_{0}=0$~GeV. This scan is based on events
160     generated with FastSim.
161    
162     The first order of business is to verify that results using
163     Fastsim and Fullsim are compatible. To this end we compare the
164     expected yield for the LM1 point in FullSim (3.56 $\pm$ 0.06) and
165     FastSim (3.29 $\pm$ 0.27), where the uncertainties are statistical only.
166     These two numbers are in agreement, which gives us confidence in
167 claudioc 1.33 using FastSim for this study.
168 claudioc 1.32
169     The FastSim events are generated with different values of $m_0$
170     and $m_{1/2}$ in steps of 10 GeV. For each point in the
171     $m_0$ vs. $m_{1/2}$ plane, we compute the expected number of
172     events at NLO. We then also calculate an upper limit $N_{UL}$
173     using cl95cms at each point using the following inputs:
174     \begin{itemize}
175     \item Number of BG events = 1.40 $\pm$ 0.77
176     \item Luminosity uncertainty = 11\%
177     \item The acceptance uncertainty is calculated at each point
178     as the quadrature sum of
179     \begin{itemize}
180     \item The uncertainty due to JES for that point, as calculated
181     using the method described in Section~\ref{sec:systematics}
182     \item A 5\% uncertainty due to lepton efficiencies
183     \item An uncertaity on the NLO cross-section obtained by varying the
184     factorization and renormalization scale by a factor of two\cite{ref:sanjay}.
185 claudioc 1.37 \item A 13\% PDF uncertainty on the product of cross-section and acceptance.
186     This uncertainty was calculated using the method of Reference~\cite{ref:pdf} for a
187     number of points in the $m_0$ vs. $m_{1/2}$ plane, and was found to be
188     approximately independent of mSUGRA parameters, see Table~\ref{tab:pdf}.
189 claudioc 1.32 \end{itemize}
190     \item We use the ``log-normal'' model for the nuisance parameters
191     in cl95cms
192     \end{itemize}
193 claudioc 1.37 We actually calculate three different values of $N_{UL}$:
194     \begin{enumerate}
195     \item Observed $N_{UL}$ asssuming the NLO cross-section.
196     \item Observed $N_{UL}$ asssuming the LO cross-section. In this case
197     uncertainties due to PDFs and renormlization/factorization scales are not
198     included.
199     \item Expected $N_{UL}$ sssuming the NLO cross-section. This is
200     calculated using the the CLA function also available in cl95cms.
201     \end{enumerate}
202    
203     \begin{table}[hbt]
204     \begin{center}
205     \caption{\label{tab:pdf} PDF uncertainties on the product of
206     cross-section and acceptance for a number of representative points
207     in the mSUGRA plane.}
208     \begin{tabular}{c|c|c|c|c|c}
209     $\tan\beta$ & $m_0$ & $m_{1/2}$ & sign of $\mu$ & $A_0$ & uncertanity (\%) \\ \hline
210     3 & 50 & 260 & + & 0 & $^{+13}_{-9}$ \\
211     3 & 50 & 270 & + & 0 & $^{+13}_{-9}$ \\
212     3 & 60 & 260 & + & 0 & $^{+14}_{-9}$ \\
213     3 & 200 & 200 & + & 0 & $^{+12}_{-9}$ \\
214     3 & 200 & 210 & + & 0 & $^{+13}_{-10}$ \\
215     3 & 210 & 200 & + & 0 & $^{+11}_{-8}$ \\
216     3 & 200 & 140 & + & 0 & $^{+16}_{-12}$ \\
217     3 & 140 & 150 & + & 0 & $^{+08}_{-8}$ \\
218     3 & 150 & 140 & + & 0 & $^{+14}_{-10}$ \\
219     10 & 60 & 260 & + & 0 & $^{+16}_{-11}$ \\
220     10 & 100 & 260 & + & 0 & $^{+14}_{-10}$ \\
221     10 & 100 & 260 & + & 0 & $^{+12}_{-9}$ \\
222     10 & 90 & 260 & + & 0 & $^{+15}_{-10}$ \\
223     10 & 240 & 260 & + & 0 & $^{+10}_{-8}$ \\
224     10 & 240 & 260 & + & 0 & $^{+13}_{-10}$ \\ \hline
225     \end{tabular}
226     \end{center}
227     \end{table}
228    
229 claudioc 1.32
230     An mSUGRA point is excluded if the resulting $N_{UL}$ is smaller
231     than the expected number of events. Because of the quantization
232     of the available MC points in the $m_0$ vs $m_{1/2}$ plane, the
233 claudioc 1.37 boundaries of the excluded region are also quantized. The excluded points
234     are shown in Figure~\ref{fig:tanbeta3raw}; in this Figure we also show
235     ad-hoc curves that represent the excluded regions.
236     In Figure~\ref{fig:msugra} we show our results compared with
237     results from previous experiments.
238 claudioc 1.32
239    
240     \begin{figure}[tbh]
241     \begin{center}
242 claudioc 1.37 \includegraphics[width=0.4\linewidth]{tanbeta3_NLO_observed.png}
243     \includegraphics[width=0.4\linewidth]{tanbeta3_NLO_expected.png}
244     \includegraphics[width=0.4\linewidth]{tanbeta3_LO_observed.png}
245     \caption{\label{fig:tanbeta3raw}\protect Excluded points in the
246     $m_0$ vs. $m_{1/2}$ plane for $\tan\beta=3$, sign of $\mu = +$ and $A_{0}=0$~GeVs.
247     Top left: observed, using the NLO cross-section.
248     Top right: expected using the NLO cross-section.
249     Bottom left: observed, using the LO cross-section.
250     The curves are meant to represent the excluded regions.}
251     \end{center}
252     \end{figure}
253    
254    
255     \begin{figure}[tbh]
256     \begin{center}
257     \includegraphics[width=\linewidth]{exclusion.pdf}
258 claudioc 1.32 \caption{\label{fig:msugra}\protect Exclusion curves in the mSUGRA parameter space,
259 claudioc 1.37 assuming $\tan\beta=3$, sign of $\mu = +$ and $A_{0}=0$~GeVs.}
260 claudioc 1.32 \end{center}
261     \end{figure}
262    
263    
264 claudioc 1.37
265     \clearpage
266    
267 claudioc 1.32 \subsubsection{Check of the nuisance parameter models}
268     We repeat the procedure outlined above but changing the
269     lognormal nuisance parameter model to a gaussian or
270     gamma-function model. The results are shown in
271     Figure~\ref{fig:nuisance}. (In this case,
272     to avoid smoothing artifacts, we
273     show the raw results, without smoothing).
274    
275     \begin{figure}[tbh]
276     \begin{center}
277     \includegraphics[width=0.5\linewidth]{nuissance.png}
278 claudioc 1.37 \caption{\label{fig:nuisance}\protect Observed NLO exclusion curves in the
279 claudioc 1.32 mSUGRA parameter space,
280     assuming $\tan\beta=3$, sign of $\mu = +$ and $A_{0}=0$~GeVs
281 claudioc 1.37 using different models for the nuisance parameters. (Note: this
282     plot was made without the PDF uncertainties.}
283 claudioc 1.32 \end{center}
284     \end{figure}
285    
286 claudioc 1.34 We find that different assumptions on the PDFs for the nuisance
287     parameters make very small differences to the set of excluded
288     points.
289     Following the recommendation of Reference~\cite{ref:cousins},
290     we use the lognormal nuisance parameter model as the default.
291 claudioc 1.32
292    
293 claudioc 1.35 % \clearpage
294 claudioc 1.32
295    
296     \subsubsection{Effect of signal contamination}
297     \label{sec:contlimit}
298 claudioc 1.34
299 claudioc 1.32 Signal contamination could affect the limit by inflating the
300     background expectation. In our case we see no evidence of signal
301     contamination, within statistics.
302     The yields in the control regions
303     $A$, $B$, and $C$ (Table~\ref{tab:datayield}) are just
304     as expected in the SM, and the check
305     of the $P_T(\ell \ell)$ method in the control region is
306     also consistent with expectations (Table~\ref{tab:victory}).
307     Since we have two data driven methods, with different
308     signal contamination issues, giving consistent
309     results that are in agreement with the SM, we
310     argue for not making any correction to our procedure
311     because of signal contamination. In some sense this would
312     be equivalent to using the SM background prediction, and using
313     the data driven methods as confirmations of that prediction.
314    
315     Nevertheless, here we explore the possible effect of
316     signal contamination. The procedure suggested to us
317 claudioc 1.34 for the ABCD method is to modify the
318 claudioc 1.32 ABCD background prediction from $A_D \cdot C_D/B_D$ to
319     $(A_D-A_S) \cdot (C_D-C_S) / (B_D - B_S)$, where the
320 claudioc 1.34 subscripts $D$ and $S$ refer to the number of observed data
321 claudioc 1.32 events and expected SUSY events, respectively, in a given region.
322 claudioc 1.34 We then recalculate $N_{UL}$ at each point using this modified
323     ABCD background estimation. For simplicity we ignore
324     information from the $P_T(\ell \ell)$
325     background estimation. This is conservative, since
326     the $P_T(\ell\ell)$ background estimation happens to
327     be numerically larger than the one from ABCD.
328 claudioc 1.32
329     Note, however, that in some cases this procedure is
330     nonsensical. For example, take LM0 as a SUSY
331     point. In region $C$ we have a SM prediction of 5.1
332     events and $C_D = 4$ in agreement with the Standard Model,
333     see Table~\ref{tab:datayield}. From the LM0 Monte Carlo,
334     we find $C_S = 8.6$ events. Thus, including information
335     on $C_D$ and $C_S$ should {\bf strengthen} the limit, since there
336     is clearly a deficit of events in the $C$ region in the
337     LM0 hypothesis. Instead, we now get a negative ABCD
338     BG prediction (which is nonsense, so we set it to zero),
339     and therefore a weaker limit.
340    
341 claudioc 1.34
342    
343    
344 claudioc 1.32 \begin{figure}[tbh]
345     \begin{center}
346     \includegraphics[width=0.5\linewidth]{sigcont.png}
347 claudioc 1.37 \caption{\label{fig:sigcont}\protect Observed NLO exclusion curves in the
348 claudioc 1.32 mSUGRA parameter space,
349     assuming $\tan\beta=3$, sign of $\mu = +$ and $A_{0}=0$~GeVs
350 claudioc 1.33 with and without the effects of signal contamination.
351 claudioc 1.37 Note: PDF uncertainties are not included.}
352 claudioc 1.32 \end{center}
353     \end{figure}
354    
355 claudioc 1.34 A comparison of the exclusion region with and without
356     signal contamination is shown in Figure~\ref{fig:sigcont}
357 claudioc 1.32 (with no smoothing). The effect of signal contamination is
358 claudioc 1.34 small, of the same order as the quantization of the scan.
359    
360 claudioc 1.32
361     \subsubsection{mSUGRA scans with different values of tan$\beta$}
362     \label{sec:tanbetascan}
363    
364 claudioc 1.37 For completeness, we also show the exclusion region calculated
365 claudioc 1.33 using $\tan\beta = 10$ (Figure~\ref{fig:msugratb10}).
366    
367 claudioc 1.37
368     \begin{figure}[tbh]
369     \begin{center}
370     \includegraphics[width=0.4\linewidth]{tanbeta10_NLO_observed.png}
371     \caption{\label{fig:tanbeta10raw}\protect Excluded points in the
372     $m_0$ vs. $m_{1/2}$ plane for $\tan\beta=10$, sign of $\mu = +$ and $A_{0}=0$~GeVs.
373     This plot is made using the NLO cross-sections.
374     The curves is meant to represent the excluded region.}
375     \end{center}
376     \end{figure}
377    
378 claudioc 1.33 \begin{figure}[tbh]
379     \begin{center}
380     \includegraphics[width=\linewidth]{exclusion_tanbeta10.pdf}
381 claudioc 1.37 \caption{\label{fig:msugratb10}\protect Exclusion curve in the mSUGRA parameter space,
382     assuming $\tan\beta=10$, sign of $\mu = +$ and $A_{0}=0$~GeVs.}
383 claudioc 1.33 \end{center}
384     \end{figure}
385 claudioc 1.32
386    
387    
388    
389    
390