ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/otherBG.tex
Revision: 1.10
Committed: Mon Nov 15 10:09:06 2010 UTC (14 years, 5 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
CVS Tags: v1
Changes since 1.9: +1 -2 lines
Log Message:
Minor updates

File Contents

# User Rev Content
1 claudioc 1.1 \section{Non $t\bar{t}$ Backgrounds}
2     \label{sec:othBG}
3    
4     Backgrounds from divector bosons and single top
5     can be reliably estimated from Monte Carlo.
6     They are negligible compared to $t\bar{t}$.
7    
8 claudioc 1.4 %Backgrounds from Drell Yan are also expected
9     %to be negligible from MC. However one always
10     %worries about the modeling of tails of the \met.
11     %In the context of other dilepton analyses we
12     %have developed a data driven method to estimate
13     %the number of Drell Yan events\cite{ref:dy}.
14     %The method is based on counting the number of
15     %$Z$ candidates passing the full selection, and
16     %then scaling by the expected ratio of Drell Yan
17     %events outside vs. inside the $Z$ mass
18     %window.\footnote{A correction based on $e\mu$ events
19     %is also applied.} This ratio is called $R_{out/in}$
20     %and is obtained from Monte Carlo.
21    
22     %To estimate the Drell-Yan contribution in the four $ABCD$
23     %regions, we count the numbers of $Z \to ee$ and $Z \to \mu\mu$
24     %events falling in each region, we subtract off the number
25     %of $e\mu$ events with $76 < M(e\mu) < 106$ GeV, and
26     %we multiply the result by $R_{out/in}$ from Monte Carlo.
27     %The results are summarized in Table~\ref{tab:ABCD-DY}.
28    
29     %\begin{table}[hbt]
30     %\begin{center}
31     %\caption{\label{tab:ABCD-DY} Drell-Yan estimations
32     %in the four
33     %regions of Figure~\ref{fig:abcdData}. The yields are
34     %for dileptons with invariant mass consistent with the $Z$.
35     %The factor
36     %$R_{out/in}$ is from MC. All uncertainties
37     %are statistical only. In regions $A$ and $D$ there is no statistics
38     %in the Monte Carlo to calculate $R_{out/in}$.}
39     %\begin{tabular}{|l|c|c|c||c|}
40     %\hline
41     %Region & $N(ee)+N(\mu\mu)$ & $N(e\mu)$ & $R_{out/in}$ & Estimated DY BG \\
42     %\hline
43     %$A$ & 0 & 0 & ?? & ??$\pm$xx \\
44     %$B$ & 5 & 1 & 2.5$\pm$1.0 & 9$\pm$xx \\
45     %$C$ & 0 & 0 & 1.$\pm$1. & 0$\pm$xx \\
46     %$D$ & 0 & 0 & ?? & 0$\pm$xx \\
47     %\hline
48     %\end{tabular}
49     %\end{center}
50     %\end{table}
51 claudioc 1.2
52    
53    
54     %When find no dilepton events with invariant mass
55     %consistent with the $Z$ in the signal region.
56     %Using the value of 0.1 for the ratio described above, this
57     %means that the Drell Yan background in our signal
58     %region is $< 0.23\%$ events at the 90\% confidence level.
59     %{\color{red} (If we find 1 event this will need to be adjusted)}.
60    
61     As discussed in Section~\ref{sec:victory}, residual Drell-Yan
62     events can have a significant effect on the data driven background
63     prediction based on $P_T(\ell\ell)$. This is taken into account,
64     based on MC expectations,
65 benhoob 1.5 by the $K_C$ factor described in that Section.
66 claudioc 1.4 As a cross-check, we use a separate data driven method to
67     estimate the impact of Drell Yan events on the
68     background prediction based on $P_T(\ell\ell)$.
69     In this method\cite{ref:top} we count the number
70     of $Z$ candidates\footnote{$e^+e^-$ and $\mu^+\mu^-$
71     with invariant mass between 76 and 106 GeV.}
72     passing the same selection as
73     region $D$ except that the $\met/\sqrt{\rm SumJetPt}$ requirement is
74     replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
75     (we call this the ``region $D'$ selection'').
76     We subtract off the number of $e\mu$ events with
77     invariant mass in the $Z$ passing the region $D'$ selection.
78     Finally, we multiply the result by ratio $R_{out/in}$ derived
79     from Monte Carlo as the ratio of Drell-Yan events
80     outside/inside the $Z$ mass window
81     in the $D'$ region.
82    
83 benhoob 1.6 We find $N^{D'}(ee+\mu\mu)=2$, $N^{D'}(e\mu)=0$,
84 benhoob 1.8 $R^{D'}_{out/in}=0.18\pm0.16$ (stat.).
85 benhoob 1.6 Thus we estimate the number of Drell Yan events in region $D'$ to
86 benhoob 1.8 be $0.36\pm 0.36$.
87 claudioc 1.4
88 benhoob 1.9 We also perform the DY estimate in the region $A'$. Here we find
89     $N^{A'}(ee+\mu\mu)=5$, $N^{A'}(e\mu)=0$,
90     $R^{D'}_{out/in}=0.50\pm0.43$ (stat.), giving an estimated
91     number of Drell Yan events in region $A'$ to
92     be $2.5 \pm 2.4$.
93    
94    
95 claudioc 1.4 This Drell Yan method could also be used to estimate
96     the number of DY events in the signal region (region $D$).
97     However, there is not enough statistics in the Monte
98     Carlo to make a measurement of $R_{out/in}$ in region
99     $D$. In any case, no $Z \to \ell\ell$ candidates are
100     found in region $D$.
101    
102    
103    
104     %In the context of other dilepton analyses we
105     %have developed a data driven method to estimate
106     %the number of Drell Yan events\cite{ref:dy}.
107     %The method is based on counting the number of
108     %$Z$ candidates passing the full selection, and
109     %then scaling by the expected ratio of Drell Yan
110     %events outside vs. inside the $Z$ mass
111     %window.\footnote{A correction based on $e\mu$ events
112     %is also applied.} This ratio is called $R_{out/in}$
113     %and is obtained from Monte Carlo.
114    
115    
116    
117    
118     %As a cross-check, we use the same Drell Yan background
119     %estimation method described above to estimate the
120     %number of DY events in the regions $A'B'C'D'$.
121     %The region $A'$ is defined in the same way as the region $A$
122     %except that the $\met/\sqrt{\rm SumJetPt}$ requirement is
123     %replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement.
124     %The regions B',
125     %C', and D' are defined in a similar way. The results are
126     %summarized in Table~\ref{tab:ABCD-DYptll}.
127    
128     %\begin{table}[hbt]
129     %\begin{center}
130     %\caption{\label{tab:ABCD-DYptll} Drell-Yan estimations
131     %in the four
132     %regions $A'B'C'D'$ defined in the text. The yields are
133     %for dileptons with invariant mass consistent with the $Z$.
134     %The factor
135     %$R_{out/in}$ is from MC. All uncertainties
136     %are statistical only.}
137     %\begin{tabular}{|l|c|c|c||c|}
138     %\hline
139     %Region & $N(ee)+N(\mu\mu)$ & $N(e\mu)$ & $R_{out/in}$ & Estimated DY BG \\
140     %\hline
141     %$A'$ & 3 & 0 & 0.7$\pm$0.3 & 2.1$\pm$xx \\
142     %$B'$ & 3 & 0 & 2.5$\pm$2.1 & 7.5$\pm$xx \\
143     %$C'$ & 0 & 0 & 0.1$\pm$0.1 & 0$\pm$xx \\
144     %$D'$ & 1 & 0 & 0.4$\pm$0.3 & 0.4$\pm$xx \\
145     %\hline
146     %\end{tabular}
147     %\end{center}
148     %\end{table}
149 claudioc 1.1
150    
151     Finally, we can use the ``Fake Rate'' method\cite{ref:FR}
152     to predict
153     the number of events with one fake lepton. We select
154     events where one of the leptons passes the full selection and
155     the other one fails the full selection but passes the
156     ``Fakeable Object'' selection of
157     Reference~\cite{ref:FR}.\footnote{For electrons we use
158     the V3 fakeable object definition to avoid complications
159     associated with electron ID cuts applied in the trigger.}
160     We then weight each event passing the full selection
161     by FR/(1-FR) where FR is the ``fake rate'' for the
162 benhoob 1.7 fakeable object. {\color{red} \bf The results are...}
163 claudioc 1.4
164 benhoob 1.10 {\color{red} \bf We will do the same thing that we did for the top analysis, but we will only do it on the full dataset. From previous studies, the contribution of fakes to the total background is at the level of a few \% or less.}