1 |
claudioc |
1.1 |
\section{Non $t\bar{t}$ Backgrounds}
|
2 |
|
|
\label{sec:othBG}
|
3 |
|
|
|
4 |
claudioc |
1.11 |
\subsection{Dilepton backgrounds from rare SM processes}
|
5 |
|
|
\label{sec:bgrare}
|
6 |
claudioc |
1.1 |
Backgrounds from divector bosons and single top
|
7 |
|
|
can be reliably estimated from Monte Carlo.
|
8 |
|
|
They are negligible compared to $t\bar{t}$.
|
9 |
claudioc |
1.11 |
|
10 |
|
|
|
11 |
|
|
\subsection{Drell Yan background}
|
12 |
|
|
\label{sec:dybg}
|
13 |
claudioc |
1.1 |
|
14 |
claudioc |
1.4 |
%Backgrounds from Drell Yan are also expected
|
15 |
|
|
%to be negligible from MC. However one always
|
16 |
|
|
%worries about the modeling of tails of the \met.
|
17 |
|
|
%In the context of other dilepton analyses we
|
18 |
|
|
%have developed a data driven method to estimate
|
19 |
|
|
%the number of Drell Yan events\cite{ref:dy}.
|
20 |
|
|
%The method is based on counting the number of
|
21 |
|
|
%$Z$ candidates passing the full selection, and
|
22 |
|
|
%then scaling by the expected ratio of Drell Yan
|
23 |
|
|
%events outside vs. inside the $Z$ mass
|
24 |
|
|
%window.\footnote{A correction based on $e\mu$ events
|
25 |
|
|
%is also applied.} This ratio is called $R_{out/in}$
|
26 |
|
|
%and is obtained from Monte Carlo.
|
27 |
|
|
|
28 |
|
|
%To estimate the Drell-Yan contribution in the four $ABCD$
|
29 |
|
|
%regions, we count the numbers of $Z \to ee$ and $Z \to \mu\mu$
|
30 |
|
|
%events falling in each region, we subtract off the number
|
31 |
|
|
%of $e\mu$ events with $76 < M(e\mu) < 106$ GeV, and
|
32 |
|
|
%we multiply the result by $R_{out/in}$ from Monte Carlo.
|
33 |
|
|
%The results are summarized in Table~\ref{tab:ABCD-DY}.
|
34 |
|
|
|
35 |
|
|
%\begin{table}[hbt]
|
36 |
|
|
%\begin{center}
|
37 |
|
|
%\caption{\label{tab:ABCD-DY} Drell-Yan estimations
|
38 |
|
|
%in the four
|
39 |
|
|
%regions of Figure~\ref{fig:abcdData}. The yields are
|
40 |
|
|
%for dileptons with invariant mass consistent with the $Z$.
|
41 |
|
|
%The factor
|
42 |
|
|
%$R_{out/in}$ is from MC. All uncertainties
|
43 |
|
|
%are statistical only. In regions $A$ and $D$ there is no statistics
|
44 |
|
|
%in the Monte Carlo to calculate $R_{out/in}$.}
|
45 |
|
|
%\begin{tabular}{|l|c|c|c||c|}
|
46 |
|
|
%\hline
|
47 |
|
|
%Region & $N(ee)+N(\mu\mu)$ & $N(e\mu)$ & $R_{out/in}$ & Estimated DY BG \\
|
48 |
|
|
%\hline
|
49 |
|
|
%$A$ & 0 & 0 & ?? & ??$\pm$xx \\
|
50 |
|
|
%$B$ & 5 & 1 & 2.5$\pm$1.0 & 9$\pm$xx \\
|
51 |
|
|
%$C$ & 0 & 0 & 1.$\pm$1. & 0$\pm$xx \\
|
52 |
|
|
%$D$ & 0 & 0 & ?? & 0$\pm$xx \\
|
53 |
|
|
%\hline
|
54 |
|
|
%\end{tabular}
|
55 |
|
|
%\end{center}
|
56 |
|
|
%\end{table}
|
57 |
claudioc |
1.2 |
|
58 |
|
|
|
59 |
|
|
|
60 |
|
|
%When find no dilepton events with invariant mass
|
61 |
|
|
%consistent with the $Z$ in the signal region.
|
62 |
|
|
%Using the value of 0.1 for the ratio described above, this
|
63 |
|
|
%means that the Drell Yan background in our signal
|
64 |
|
|
%region is $< 0.23\%$ events at the 90\% confidence level.
|
65 |
|
|
%{\color{red} (If we find 1 event this will need to be adjusted)}.
|
66 |
|
|
|
67 |
|
|
As discussed in Section~\ref{sec:victory}, residual Drell-Yan
|
68 |
|
|
events can have a significant effect on the data driven background
|
69 |
|
|
prediction based on $P_T(\ell\ell)$. This is taken into account,
|
70 |
|
|
based on MC expectations,
|
71 |
benhoob |
1.5 |
by the $K_C$ factor described in that Section.
|
72 |
claudioc |
1.4 |
As a cross-check, we use a separate data driven method to
|
73 |
|
|
estimate the impact of Drell Yan events on the
|
74 |
|
|
background prediction based on $P_T(\ell\ell)$.
|
75 |
|
|
In this method\cite{ref:top} we count the number
|
76 |
|
|
of $Z$ candidates\footnote{$e^+e^-$ and $\mu^+\mu^-$
|
77 |
|
|
with invariant mass between 76 and 106 GeV.}
|
78 |
|
|
passing the same selection as
|
79 |
|
|
region $D$ except that the $\met/\sqrt{\rm SumJetPt}$ requirement is
|
80 |
|
|
replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
|
81 |
|
|
(we call this the ``region $D'$ selection'').
|
82 |
|
|
We subtract off the number of $e\mu$ events with
|
83 |
|
|
invariant mass in the $Z$ passing the region $D'$ selection.
|
84 |
|
|
Finally, we multiply the result by ratio $R_{out/in}$ derived
|
85 |
|
|
from Monte Carlo as the ratio of Drell-Yan events
|
86 |
|
|
outside/inside the $Z$ mass window
|
87 |
|
|
in the $D'$ region.
|
88 |
|
|
|
89 |
benhoob |
1.15 |
In the region D', we find no DY events in MC outside the Z mass window.
|
90 |
|
|
Our estimate of $R_{out/in}$ and our expected DY contribution to the region
|
91 |
|
|
D' in data are therefore zero.
|
92 |
|
|
{\bf \color{red} do we want to do anything else with this, for example assess a systematic on the expected DY contribution in data???}
|
93 |
|
|
|
94 |
|
|
%We find $N^{D'}(ee+\mu\mu)=2$, $N^{D'}(e\mu)=0$,
|
95 |
|
|
%$R^{D'}_{out/in}=0.18\pm0.16$ (stat.).
|
96 |
|
|
%Thus we estimate the number of Drell Yan events in region $D'$ to
|
97 |
|
|
%be $0.36\pm 0.36$.
|
98 |
claudioc |
1.4 |
|
99 |
benhoob |
1.9 |
We also perform the DY estimate in the region $A'$. Here we find
|
100 |
|
|
$N^{A'}(ee+\mu\mu)=5$, $N^{A'}(e\mu)=0$,
|
101 |
benhoob |
1.16 |
$R^{D'}_{out/in}=0.33\pm0.17$ (stat), giving an estimated
|
102 |
benhoob |
1.9 |
number of Drell Yan events in region $A'$ to
|
103 |
benhoob |
1.15 |
be $1.65 \pm 1.13$.
|
104 |
benhoob |
1.9 |
|
105 |
|
|
|
106 |
claudioc |
1.4 |
This Drell Yan method could also be used to estimate
|
107 |
|
|
the number of DY events in the signal region (region $D$).
|
108 |
|
|
However, there is not enough statistics in the Monte
|
109 |
|
|
Carlo to make a measurement of $R_{out/in}$ in region
|
110 |
|
|
$D$. In any case, no $Z \to \ell\ell$ candidates are
|
111 |
claudioc |
1.11 |
found in region $D$.
|
112 |
claudioc |
1.4 |
|
113 |
|
|
|
114 |
|
|
|
115 |
|
|
%In the context of other dilepton analyses we
|
116 |
|
|
%have developed a data driven method to estimate
|
117 |
|
|
%the number of Drell Yan events\cite{ref:dy}.
|
118 |
|
|
%The method is based on counting the number of
|
119 |
|
|
%$Z$ candidates passing the full selection, and
|
120 |
|
|
%then scaling by the expected ratio of Drell Yan
|
121 |
|
|
%events outside vs. inside the $Z$ mass
|
122 |
|
|
%window.\footnote{A correction based on $e\mu$ events
|
123 |
|
|
%is also applied.} This ratio is called $R_{out/in}$
|
124 |
|
|
%and is obtained from Monte Carlo.
|
125 |
|
|
|
126 |
|
|
|
127 |
|
|
|
128 |
|
|
|
129 |
|
|
%As a cross-check, we use the same Drell Yan background
|
130 |
|
|
%estimation method described above to estimate the
|
131 |
|
|
%number of DY events in the regions $A'B'C'D'$.
|
132 |
|
|
%The region $A'$ is defined in the same way as the region $A$
|
133 |
|
|
%except that the $\met/\sqrt{\rm SumJetPt}$ requirement is
|
134 |
|
|
%replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement.
|
135 |
|
|
%The regions B',
|
136 |
|
|
%C', and D' are defined in a similar way. The results are
|
137 |
|
|
%summarized in Table~\ref{tab:ABCD-DYptll}.
|
138 |
|
|
|
139 |
|
|
%\begin{table}[hbt]
|
140 |
|
|
%\begin{center}
|
141 |
|
|
%\caption{\label{tab:ABCD-DYptll} Drell-Yan estimations
|
142 |
|
|
%in the four
|
143 |
|
|
%regions $A'B'C'D'$ defined in the text. The yields are
|
144 |
|
|
%for dileptons with invariant mass consistent with the $Z$.
|
145 |
|
|
%The factor
|
146 |
|
|
%$R_{out/in}$ is from MC. All uncertainties
|
147 |
|
|
%are statistical only.}
|
148 |
|
|
%\begin{tabular}{|l|c|c|c||c|}
|
149 |
|
|
%\hline
|
150 |
|
|
%Region & $N(ee)+N(\mu\mu)$ & $N(e\mu)$ & $R_{out/in}$ & Estimated DY BG \\
|
151 |
|
|
%\hline
|
152 |
|
|
%$A'$ & 3 & 0 & 0.7$\pm$0.3 & 2.1$\pm$xx \\
|
153 |
|
|
%$B'$ & 3 & 0 & 2.5$\pm$2.1 & 7.5$\pm$xx \\
|
154 |
|
|
%$C'$ & 0 & 0 & 0.1$\pm$0.1 & 0$\pm$xx \\
|
155 |
|
|
%$D'$ & 1 & 0 & 0.4$\pm$0.3 & 0.4$\pm$xx \\
|
156 |
|
|
%\hline
|
157 |
|
|
%\end{tabular}
|
158 |
|
|
%\end{center}
|
159 |
|
|
%\end{table}
|
160 |
claudioc |
1.1 |
|
161 |
|
|
|
162 |
claudioc |
1.11 |
\subsection{Background from ``fake'' leptons}
|
163 |
|
|
\label{sec:bgfake}
|
164 |
|
|
|
165 |
claudioc |
1.1 |
Finally, we can use the ``Fake Rate'' method\cite{ref:FR}
|
166 |
|
|
to predict
|
167 |
|
|
the number of events with one fake lepton. We select
|
168 |
|
|
events where one of the leptons passes the full selection and
|
169 |
|
|
the other one fails the full selection but passes the
|
170 |
|
|
``Fakeable Object'' selection of
|
171 |
|
|
Reference~\cite{ref:FR}.\footnote{For electrons we use
|
172 |
|
|
the V3 fakeable object definition to avoid complications
|
173 |
|
|
associated with electron ID cuts applied in the trigger.}
|
174 |
|
|
We then weight each event passing the full selection
|
175 |
|
|
by FR/(1-FR) where FR is the ``fake rate'' for the
|
176 |
claudioc |
1.11 |
fakeable object.
|
177 |
|
|
|
178 |
benhoob |
1.17 |
|
179 |
|
|
We first apply this method\footnote{ Please note that we have used Spring10 MC samples for the following
|
180 |
|
|
study of backgrounds with fake leptons. We do not observe significant
|
181 |
|
|
changes moving to Fall10 samples} to events passing the preselection.
|
182 |
ibloch |
1.12 |
The raw result is $6.7 \pm 1.7 \pm 3.4$, where the first uncertainty is
|
183 |
claudioc |
1.11 |
statistical and the second uncertainty is from the 50\% systematic
|
184 |
|
|
uncertainty associated with this method\cite{ref:FR}. This has
|
185 |
|
|
to be corrected for ``signal contamination'', {\em i.e.}, the
|
186 |
|
|
contribution from true dilepton events with one lepton
|
187 |
|
|
failing the selection. This is estimated from Monte Carlo
|
188 |
ibloch |
1.12 |
to be $2.3 \pm 0.05$, where the uncertainty is from MC statistics
|
189 |
benhoob |
1.17 |
only. Thus, the estimated number of events with one ``fake''
|
190 |
ibloch |
1.13 |
lepton after the preselection is $4.4 \pm 3.8$.
|
191 |
claudioc |
1.11 |
The Monte Carlo expectation for this contribution can be obtained
|
192 |
|
|
by summing up the $t\bar{t}\rightarrow \mathrm{other}$ and
|
193 |
|
|
$W^{\pm}$ + jets entries from Table~\ref{tab:yields}. This
|
194 |
|
|
result is $2.0 \pm 0.2$ (stat. error only). Thus, this study
|
195 |
|
|
confirms that the contribution of fake leptons to the event sample
|
196 |
|
|
after preselection is small, and consistent with the MC prediction.
|
197 |
|
|
|
198 |
|
|
We apply the same method to events in the signal region (region D).
|
199 |
|
|
There are no events where one of the leptons passes the full selection and
|
200 |
|
|
the other one fails the full selection but passes the
|
201 |
|
|
``Fakeable Object'' selection. Thus the background estimate
|
202 |
|
|
is $0.0^{+0.4}_{-0.0}$, where the upper uncertainty corresponds (roughly)
|
203 |
|
|
to what we would have calculated if we had found one such event.
|
204 |
|
|
|
205 |
|
|
We can also apply a similar technique to estimate backgrounds
|
206 |
|
|
with two fake leptons, {\em e.g.}, from QCD events.
|
207 |
|
|
In this case we select events with both
|
208 |
|
|
leptons failing the full selection but passing the
|
209 |
|
|
``Fakeable Object'' selection. For the preselection, the
|
210 |
ibloch |
1.12 |
result is $0.2 \pm 0.2 \pm 0.2$, where the first uncertainty
|
211 |
claudioc |
1.11 |
is statistical and the second uncertainty is from the fake rate
|
212 |
|
|
systematics (50\% per lepton, 100\% total). Note that this
|
213 |
ibloch |
1.13 |
double fake contribution is already included in the $4.4 \pm 3.8$
|
214 |
claudioc |
1.11 |
single fake estimate discussed above $-$ in fact, it is double counted.
|
215 |
ibloch |
1.13 |
Therefore the total fake estimate is $4.0 \pm 3.8$ (single fakes)
|
216 |
ibloch |
1.14 |
and $0.2 \pm 0.3$ (double fakes).
|
217 |
claudioc |
1.4 |
|
218 |
claudioc |
1.11 |
In the signal region (region D), the estimated double fake background
|
219 |
|
|
is $0.00^{+0.04}_{-0.00}$. This is negligible. |