ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/otherBG.tex
Revision: 1.2
Committed: Fri Nov 5 23:07:43 2010 UTC (14 years, 5 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
Changes since 1.1: +77 -7 lines
Log Message:
more better

File Contents

# User Rev Content
1 claudioc 1.1 \section{Non $t\bar{t}$ Backgrounds}
2     \label{sec:othBG}
3    
4     Backgrounds from divector bosons and single top
5     can be reliably estimated from Monte Carlo.
6     They are negligible compared to $t\bar{t}$.
7    
8     Backgrounds from Drell Yan are also expected
9     to be negligible from MC. However one always
10     worries about the modeling of tails of the \met.
11     In the context of other dilepton analyses we
12     have developed a data driven method to estimate
13     the number of Drell Yan events\cite{ref:dy}.
14     The method is based on counting the number of
15     $Z$ candidates passing the full selection, and
16     then scaling by the expected ratio of Drell Yan
17     events outside vs. inside the $Z$ mass
18     window.\footnote{A correction based on $e\mu$ events
19 claudioc 1.2 is also applied.} This ratio is called $R_{out/in}$
20     and is obtained from Monte Carlo.
21    
22     To estimate the Drell-Yan contribution in the four $ABCD$
23     regions, we count the numbers of $Z \to ee$ and $Z \to \mu\mu$
24     events falling in each region, we subtract off the number
25     of $e\mu$ events with $76 < M(e\mu) < 106$ GeV, and
26     we multiply the result by $R_{out/in}$ from Monte Carlo.
27     The results are summarized in Table~\ref{tab:ABCD-DY}.
28    
29     \begin{table}[hbt]
30     \begin{center}
31     \caption{\label{tab:ABCD-DY} Drell-Yan estimations
32     in the four
33     regions of Figure~\ref{fig:abcdData}. The yields are
34     for dileptons with invariant mass consistent with the $Z$.
35     The factor
36     $R_{out/in}$ is from MC. All uncertainties
37     are statistical only.}
38     \begin{tabular}{|l|c|c|c||c|}
39     \hline
40     Region & $N(ee)+N(\mu\mu)$ & $N(e\mu)$ & $R_{out/in}$ & Estimated DY BG \\
41     \hline
42     $A$ & xx & xx & xx$\pm$xx & xx$\pm$xx \\
43     $B$ & xx & xx & xx$\pm$xx & xx$\pm$xx \\
44     $C$ & xx & xx & xx$\pm$xx & xx$\pm$xx \\
45     $D$ & xx & xx & xx$\pm$xx & xx$\pm$xx \\
46     \hline
47     \end{tabular}
48     \end{center}
49     \end{table}
50    
51    
52    
53     %When find no dilepton events with invariant mass
54     %consistent with the $Z$ in the signal region.
55     %Using the value of 0.1 for the ratio described above, this
56     %means that the Drell Yan background in our signal
57     %region is $< 0.23\%$ events at the 90\% confidence level.
58     %{\color{red} (If we find 1 event this will need to be adjusted)}.
59    
60     As discussed in Section~\ref{sec:victory}, residual Drell-Yan
61     events can have a significant effect on the data driven background
62     prediction based on $P_T(\ell\ell)$. This is taken into account,
63     based on MC expectations,
64     by the $K_{\rm{fudge}}$ factor describes in that Section.
65     As a cross-check, we use the same Drell Yan background
66     estimation method described above to estimated the
67     number of DY events in the regions $A'B'C'D'$.
68     The region $A'$ is defined in the same way as the region $A$
69     except that the $\met/\sqrt{\rm SumJetPt}$ requirement is
70     replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement.
71     The regions B',
72     C', and D' are defined in a similar way. The results are
73     summarized in Table~\ref{tab:ABCD-DYptll}.
74    
75     \begin{table}[hbt]
76     \begin{center}
77     \caption{\label{tab:ABCD-DYptll} Drell-Yan estimations
78     in the four
79     regions $A'B'C'D'$ defined in the text. The yields are
80     for dileptons with invariant mass consistent with the $Z$.
81     The factor
82     $R_{out/in}$ is from MC. All uncertainties
83     are statistical only.}
84     \begin{tabular}{|l|c|c|c||c|}
85     \hline
86     Region & $N(ee)+N(\mu\mu)$ & $N(e\mu)$ & $R_{out/in}$ & Estimated DY BG \\
87     \hline
88     $A'$ & xx & xx & xx$\pm$xx & xx$\pm$xx \\
89     $B'$ & xx & xx & xx$\pm$xx & xx$\pm$xx \\
90     $C'$ & xx & xx & xx$\pm$xx & xx$\pm$xx \\
91     $D'$ & xx & xx & xx$\pm$xx & xx$\pm$xx \\
92     \hline
93     \end{tabular}
94     \end{center}
95     \end{table}
96 claudioc 1.1
97    
98     Finally, we can use the ``Fake Rate'' method\cite{ref:FR}
99     to predict
100     the number of events with one fake lepton. We select
101     events where one of the leptons passes the full selection and
102     the other one fails the full selection but passes the
103     ``Fakeable Object'' selection of
104     Reference~\cite{ref:FR}.\footnote{For electrons we use
105     the V3 fakeable object definition to avoid complications
106     associated with electron ID cuts applied in the trigger.}
107     We then weight each event passing the full selection
108     by FR/(1-FR) where FR is the ``fake rate'' for the
109     fakeable object. {\color{red} The results are...}