ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/otherBG.tex
Revision: 1.7
Committed: Thu Nov 11 15:47:18 2010 UTC (14 years, 5 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
Changes since 1.6: +5 -5 lines
Log Message:
Minor updates

File Contents

# User Rev Content
1 claudioc 1.1 \section{Non $t\bar{t}$ Backgrounds}
2     \label{sec:othBG}
3    
4     Backgrounds from divector bosons and single top
5     can be reliably estimated from Monte Carlo.
6     They are negligible compared to $t\bar{t}$.
7    
8 claudioc 1.4 %Backgrounds from Drell Yan are also expected
9     %to be negligible from MC. However one always
10     %worries about the modeling of tails of the \met.
11     %In the context of other dilepton analyses we
12     %have developed a data driven method to estimate
13     %the number of Drell Yan events\cite{ref:dy}.
14     %The method is based on counting the number of
15     %$Z$ candidates passing the full selection, and
16     %then scaling by the expected ratio of Drell Yan
17     %events outside vs. inside the $Z$ mass
18     %window.\footnote{A correction based on $e\mu$ events
19     %is also applied.} This ratio is called $R_{out/in}$
20     %and is obtained from Monte Carlo.
21    
22     %To estimate the Drell-Yan contribution in the four $ABCD$
23     %regions, we count the numbers of $Z \to ee$ and $Z \to \mu\mu$
24     %events falling in each region, we subtract off the number
25     %of $e\mu$ events with $76 < M(e\mu) < 106$ GeV, and
26     %we multiply the result by $R_{out/in}$ from Monte Carlo.
27     %The results are summarized in Table~\ref{tab:ABCD-DY}.
28    
29     %\begin{table}[hbt]
30     %\begin{center}
31     %\caption{\label{tab:ABCD-DY} Drell-Yan estimations
32     %in the four
33     %regions of Figure~\ref{fig:abcdData}. The yields are
34     %for dileptons with invariant mass consistent with the $Z$.
35     %The factor
36     %$R_{out/in}$ is from MC. All uncertainties
37     %are statistical only. In regions $A$ and $D$ there is no statistics
38     %in the Monte Carlo to calculate $R_{out/in}$.}
39     %\begin{tabular}{|l|c|c|c||c|}
40     %\hline
41     %Region & $N(ee)+N(\mu\mu)$ & $N(e\mu)$ & $R_{out/in}$ & Estimated DY BG \\
42     %\hline
43     %$A$ & 0 & 0 & ?? & ??$\pm$xx \\
44     %$B$ & 5 & 1 & 2.5$\pm$1.0 & 9$\pm$xx \\
45     %$C$ & 0 & 0 & 1.$\pm$1. & 0$\pm$xx \\
46     %$D$ & 0 & 0 & ?? & 0$\pm$xx \\
47     %\hline
48     %\end{tabular}
49     %\end{center}
50     %\end{table}
51 claudioc 1.2
52    
53    
54     %When find no dilepton events with invariant mass
55     %consistent with the $Z$ in the signal region.
56     %Using the value of 0.1 for the ratio described above, this
57     %means that the Drell Yan background in our signal
58     %region is $< 0.23\%$ events at the 90\% confidence level.
59     %{\color{red} (If we find 1 event this will need to be adjusted)}.
60    
61     As discussed in Section~\ref{sec:victory}, residual Drell-Yan
62     events can have a significant effect on the data driven background
63     prediction based on $P_T(\ell\ell)$. This is taken into account,
64     based on MC expectations,
65 benhoob 1.5 by the $K_C$ factor described in that Section.
66 claudioc 1.4 As a cross-check, we use a separate data driven method to
67     estimate the impact of Drell Yan events on the
68     background prediction based on $P_T(\ell\ell)$.
69     In this method\cite{ref:top} we count the number
70     of $Z$ candidates\footnote{$e^+e^-$ and $\mu^+\mu^-$
71     with invariant mass between 76 and 106 GeV.}
72     passing the same selection as
73     region $D$ except that the $\met/\sqrt{\rm SumJetPt}$ requirement is
74     replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
75     (we call this the ``region $D'$ selection'').
76     We subtract off the number of $e\mu$ events with
77     invariant mass in the $Z$ passing the region $D'$ selection.
78     Finally, we multiply the result by ratio $R_{out/in}$ derived
79     from Monte Carlo as the ratio of Drell-Yan events
80     outside/inside the $Z$ mass window
81     in the $D'$ region.
82    
83 benhoob 1.6 We find $N^{D'}(ee+\mu\mu)=2$, $N^{D'}(e\mu)=0$,
84     $R^{D'}_{out/in}=0.4\pm0.3$ (stat.).
85     Thus we estimate the number of Drell Yan events in region $D'$ to
86 benhoob 1.7 be $0.8\pm X$.
87     {\color{red} \bf Update Rout/in with dpt/pt cut and Zmumugamma veto}
88 claudioc 1.4
89     This Drell Yan method could also be used to estimate
90     the number of DY events in the signal region (region $D$).
91     However, there is not enough statistics in the Monte
92     Carlo to make a measurement of $R_{out/in}$ in region
93     $D$. In any case, no $Z \to \ell\ell$ candidates are
94     found in region $D$.
95    
96    
97    
98     %In the context of other dilepton analyses we
99     %have developed a data driven method to estimate
100     %the number of Drell Yan events\cite{ref:dy}.
101     %The method is based on counting the number of
102     %$Z$ candidates passing the full selection, and
103     %then scaling by the expected ratio of Drell Yan
104     %events outside vs. inside the $Z$ mass
105     %window.\footnote{A correction based on $e\mu$ events
106     %is also applied.} This ratio is called $R_{out/in}$
107     %and is obtained from Monte Carlo.
108    
109    
110    
111    
112     %As a cross-check, we use the same Drell Yan background
113     %estimation method described above to estimate the
114     %number of DY events in the regions $A'B'C'D'$.
115     %The region $A'$ is defined in the same way as the region $A$
116     %except that the $\met/\sqrt{\rm SumJetPt}$ requirement is
117     %replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement.
118     %The regions B',
119     %C', and D' are defined in a similar way. The results are
120     %summarized in Table~\ref{tab:ABCD-DYptll}.
121    
122     %\begin{table}[hbt]
123     %\begin{center}
124     %\caption{\label{tab:ABCD-DYptll} Drell-Yan estimations
125     %in the four
126     %regions $A'B'C'D'$ defined in the text. The yields are
127     %for dileptons with invariant mass consistent with the $Z$.
128     %The factor
129     %$R_{out/in}$ is from MC. All uncertainties
130     %are statistical only.}
131     %\begin{tabular}{|l|c|c|c||c|}
132     %\hline
133     %Region & $N(ee)+N(\mu\mu)$ & $N(e\mu)$ & $R_{out/in}$ & Estimated DY BG \\
134     %\hline
135     %$A'$ & 3 & 0 & 0.7$\pm$0.3 & 2.1$\pm$xx \\
136     %$B'$ & 3 & 0 & 2.5$\pm$2.1 & 7.5$\pm$xx \\
137     %$C'$ & 0 & 0 & 0.1$\pm$0.1 & 0$\pm$xx \\
138     %$D'$ & 1 & 0 & 0.4$\pm$0.3 & 0.4$\pm$xx \\
139     %\hline
140     %\end{tabular}
141     %\end{center}
142     %\end{table}
143 claudioc 1.1
144    
145     Finally, we can use the ``Fake Rate'' method\cite{ref:FR}
146     to predict
147     the number of events with one fake lepton. We select
148     events where one of the leptons passes the full selection and
149     the other one fails the full selection but passes the
150     ``Fakeable Object'' selection of
151     Reference~\cite{ref:FR}.\footnote{For electrons we use
152     the V3 fakeable object definition to avoid complications
153     associated with electron ID cuts applied in the trigger.}
154     We then weight each event passing the full selection
155     by FR/(1-FR) where FR is the ``fake rate'' for the
156 benhoob 1.7 fakeable object. {\color{red} \bf The results are...}
157 claudioc 1.4
158 benhoob 1.7 {\color{red} \bf We will do the same thing that we did for
159     the top analysis, but we will only do it on the full dataset.}