ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/otherBG.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/otherBG.tex (file contents):
Revision 1.2 by claudioc, Fri Nov 5 23:07:43 2010 UTC vs.
Revision 1.9 by benhoob, Sat Nov 13 07:41:57 2010 UTC

# Line 5 | Line 5 | Backgrounds from divector bosons and sin
5   can be reliably estimated from Monte Carlo.
6   They are negligible compared to $t\bar{t}$.
7  
8 < Backgrounds from Drell Yan are also expected
9 < to be negligible from MC.  However one always
10 < worries about the modeling of tails of the \met.
11 < In the context of other dilepton analyses we
12 < have developed a data driven method to estimate
13 < the number of Drell Yan events\cite{ref:dy}.
14 < The method is based on counting the number of
15 < $Z$ candidates passing the full selection, and
16 < then scaling by the expected ratio of Drell Yan
17 < events outside vs. inside the $Z$ mass
18 < window.\footnote{A correction based on $e\mu$ events
19 < is also applied.}  This ratio is called $R_{out/in}$
20 < and is obtained from Monte Carlo.
21 <
22 < To estimate the Drell-Yan contribution in the four $ABCD$
23 < regions, we count the numbers of $Z \to ee$ and $Z \to \mu\mu$
24 < events falling in each region, we subtract off the number
25 < of $e\mu$ events with $76 < M(e\mu) < 106$ GeV, and
26 < we multiply the result by $R_{out/in}$ from Monte Carlo.
27 < The results are summarized in Table~\ref{tab:ABCD-DY}.
28 <
29 < \begin{table}[hbt]
30 < \begin{center}
31 < \caption{\label{tab:ABCD-DY} Drell-Yan estimations
32 < in the four
33 < regions of Figure~\ref{fig:abcdData}.  The yields are
34 < for dileptons with invariant mass consistent with the $Z$.
35 < The factor
36 < $R_{out/in}$ is from MC.  All uncertainties
37 < are statistical only.}
38 < \begin{tabular}{|l|c|c|c||c|}
39 < \hline
40 < Region   & $N(ee)+N(\mu\mu)$ & $N(e\mu)$ & $R_{out/in}$ & Estimated DY BG \\
41 < \hline
42 < $A$      &  xx               & xx        & xx$\pm$xx   & xx$\pm$xx   \\
43 < $B$      &  xx               & xx        & xx$\pm$xx   & xx$\pm$xx   \\
44 < $C$      &  xx               & xx        & xx$\pm$xx   & xx$\pm$xx   \\
45 < $D$      &  xx               & xx        & xx$\pm$xx   & xx$\pm$xx   \\
46 < \hline
47 < \end{tabular}
48 < \end{center}
49 < \end{table}
8 > %Backgrounds from Drell Yan are also expected
9 > %to be negligible from MC.  However one always
10 > %worries about the modeling of tails of the \met.
11 > %In the context of other dilepton analyses we
12 > %have developed a data driven method to estimate
13 > %the number of Drell Yan events\cite{ref:dy}.
14 > %The method is based on counting the number of
15 > %$Z$ candidates passing the full selection, and
16 > %then scaling by the expected ratio of Drell Yan
17 > %events outside vs. inside the $Z$ mass
18 > %window.\footnote{A correction based on $e\mu$ events
19 > %is also applied.}  This ratio is called $R_{out/in}$
20 > %and is obtained from Monte Carlo.
21 >
22 > %To estimate the Drell-Yan contribution in the four $ABCD$
23 > %regions, we count the numbers of $Z \to ee$ and $Z \to \mu\mu$
24 > %events falling in each region, we subtract off the number
25 > %of $e\mu$ events with $76 < M(e\mu) < 106$ GeV, and
26 > %we multiply the result by $R_{out/in}$ from Monte Carlo.
27 > %The results are summarized in Table~\ref{tab:ABCD-DY}.
28 >
29 > %\begin{table}[hbt]
30 > %\begin{center}
31 > %\caption{\label{tab:ABCD-DY} Drell-Yan estimations
32 > %in the four
33 > %regions of Figure~\ref{fig:abcdData}.  The yields are
34 > %for dileptons with invariant mass consistent with the $Z$.
35 > %The factor
36 > %$R_{out/in}$ is from MC.  All uncertainties
37 > %are statistical only.  In regions $A$ and $D$ there is no statistics
38 > %in the Monte Carlo to calculate $R_{out/in}$.}
39 > %\begin{tabular}{|l|c|c|c||c|}
40 > %\hline
41 > %Region   & $N(ee)+N(\mu\mu)$ & $N(e\mu)$ & $R_{out/in}$ & Estimated DY BG \\
42 > %\hline
43 > %$A$      &  0                & 0         & ??          & ??$\pm$xx   \\
44 > %$B$      &  5                & 1         & 2.5$\pm$1.0 & 9$\pm$xx   \\
45 > %$C$      &  0                & 0         & 1.$\pm$1.   & 0$\pm$xx   \\
46 > %$D$      &  0                & 0         & ??          & 0$\pm$xx   \\
47 > %\hline
48 > %\end{tabular}
49 > %\end{center}
50 > %\end{table}
51  
52  
53  
# Line 61 | Line 62 | As discussed in Section~\ref{sec:victory
62   events can have a significant effect on the data driven background
63   prediction based on $P_T(\ell\ell)$.  This is taken into account,
64   based on MC expectations,
65 < by the $K_{\rm{fudge}}$ factor describes in that Section.  
66 < As a cross-check, we use the same Drell Yan background
67 < estimation method described above to estimated the
68 < number of DY events in the regions $A'B'C'D'$.
69 < The region $A'$ is defined in the same way as the region $A$
70 < except that the $\met/\sqrt{\rm SumJetPt}$ requirement is
71 < replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement.
72 < The regions B',
73 < C', and D' are defined in a similar way.  The results are
74 < summarized in Table~\ref{tab:ABCD-DYptll}.
75 <
76 < \begin{table}[hbt]
77 < \begin{center}
78 < \caption{\label{tab:ABCD-DYptll} Drell-Yan estimations
79 < in the four
80 < regions $A'B'C'D'$ defined in the text.  The yields are
81 < for dileptons with invariant mass consistent with the $Z$.
82 < The factor
83 < $R_{out/in}$ is from MC.  All uncertainties
84 < are statistical only.}
85 < \begin{tabular}{|l|c|c|c||c|}
86 < \hline
87 < Region    & $N(ee)+N(\mu\mu)$ & $N(e\mu)$ & $R_{out/in}$ & Estimated DY BG \\
88 < \hline
89 < $A'$      &  xx               & xx        & xx$\pm$xx   & xx$\pm$xx   \\
90 < $B'$      &  xx               & xx        & xx$\pm$xx   & xx$\pm$xx   \\
91 < $C'$      &  xx               & xx        & xx$\pm$xx   & xx$\pm$xx   \\
92 < $D'$      &  xx               & xx        & xx$\pm$xx   & xx$\pm$xx   \\
93 < \hline
94 < \end{tabular}
95 < \end{center}
96 < \end{table}
65 > by the $K_C$ factor described in that Section.  
66 > As a cross-check, we use a separate data driven method to
67 > estimate the impact of Drell Yan events on the
68 > background prediction based on $P_T(\ell\ell)$.
69 > In this method\cite{ref:top} we count the number
70 > of $Z$ candidates\footnote{$e^+e^-$ and $\mu^+\mu^-$
71 > with invariant mass between 76 and 106 GeV.}
72 > passing the same selection as
73 > region $D$ except that the $\met/\sqrt{\rm SumJetPt}$ requirement is
74 > replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
75 > (we call this the ``region $D'$ selection'').
76 > We subtract off the number of $e\mu$ events with
77 > invariant mass in the $Z$ passing the region $D'$ selection.
78 > Finally, we multiply the result by ratio $R_{out/in}$ derived
79 > from Monte Carlo as the ratio of Drell-Yan events
80 > outside/inside the $Z$ mass window
81 > in the $D'$ region.
82 >
83 > We find $N^{D'}(ee+\mu\mu)=2$, $N^{D'}(e\mu)=0$,
84 > $R^{D'}_{out/in}=0.18\pm0.16$ (stat.).
85 > Thus we estimate the number of Drell Yan events in region $D'$ to
86 > be $0.36\pm 0.36$.
87 >
88 > We also perform the DY estimate in the region $A'$. Here we find
89 > $N^{A'}(ee+\mu\mu)=5$, $N^{A'}(e\mu)=0$,
90 > $R^{D'}_{out/in}=0.50\pm0.43$ (stat.), giving an estimated
91 > number of Drell Yan events in region $A'$ to
92 > be $2.5 \pm 2.4$.
93 >
94 >
95 > This Drell Yan method could also be used to estimate
96 > the number of DY events in the signal region (region $D$).
97 > However, there is not enough statistics in the Monte
98 > Carlo to make a measurement of $R_{out/in}$ in region
99 > $D$.  In any case, no $Z \to \ell\ell$ candidates are
100 > found in region $D$.
101 >
102 >
103 >
104 > %In the context of other dilepton analyses we
105 > %have developed a data driven method to estimate
106 > %the number of Drell Yan events\cite{ref:dy}.
107 > %The method is based on counting the number of
108 > %$Z$ candidates passing the full selection, and
109 > %then scaling by the expected ratio of Drell Yan
110 > %events outside vs. inside the $Z$ mass
111 > %window.\footnote{A correction based on $e\mu$ events
112 > %is also applied.}  This ratio is called $R_{out/in}$
113 > %and is obtained from Monte Carlo.
114 >
115 >
116 >
117 >
118 > %As a cross-check, we use the same Drell Yan background
119 > %estimation method described above to estimate the
120 > %number of DY events in the regions $A'B'C'D'$.
121 > %The region $A'$ is defined in the same way as the region $A$
122 > %except that the $\met/\sqrt{\rm SumJetPt}$ requirement is
123 > %replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement.
124 > %The regions B',
125 > %C', and D' are defined in a similar way.  The results are
126 > %summarized in Table~\ref{tab:ABCD-DYptll}.
127 >
128 > %\begin{table}[hbt]
129 > %\begin{center}
130 > %\caption{\label{tab:ABCD-DYptll} Drell-Yan estimations
131 > %in the four
132 > %regions $A'B'C'D'$ defined in the text.  The yields are
133 > %for dileptons with invariant mass consistent with the $Z$.
134 > %The factor
135 > %$R_{out/in}$ is from MC.  All uncertainties
136 > %are statistical only.}
137 > %\begin{tabular}{|l|c|c|c||c|}
138 > %\hline
139 > %Region    & $N(ee)+N(\mu\mu)$ & $N(e\mu)$ & $R_{out/in}$ & Estimated DY BG \\
140 > %\hline
141 > %$A'$      &  3               & 0        & 0.7$\pm$0.3   & 2.1$\pm$xx   \\
142 > %$B'$      &  3               & 0        & 2.5$\pm$2.1   & 7.5$\pm$xx   \\
143 > %$C'$      &  0               & 0        & 0.1$\pm$0.1   & 0$\pm$xx   \\
144 > %$D'$      &  1               & 0        & 0.4$\pm$0.3   & 0.4$\pm$xx   \\
145 > %\hline
146 > %\end{tabular}
147 > %\end{center}
148 > %\end{table}
149  
150  
151   Finally, we can use the ``Fake Rate'' method\cite{ref:FR}
# Line 106 | Line 159 | the V3 fakeable object definition to avo
159   associated with electron ID cuts applied in the trigger.}
160   We then weight each event passing the full selection
161   by FR/(1-FR) where FR is the ``fake rate'' for the
162 < fakeable object.  {\color{red} The results are...}
162 > fakeable object.  {\color{red} \bf The results are...}
163 >
164 > {\color{red} \bf We will do the same thing that we did for
165 > the top analysis, but we will only do it on the full dataset.}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines