ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
Revision: 1.1
Committed: Fri Oct 29 02:29:40 2010 UTC (14 years, 6 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
Log Message:
blah

File Contents

# User Rev Content
1 claudioc 1.1 \section{Results}
2     \label{sec:results}
3    
4     The data, together with SM expectations is presented
5     in Figure~\ref{fig:abcdData}. The data yields in the
6     four regions are summarized in Table~\ref{tab:datayield}.
7    
8    
9    
10     \begin{figure}[tbh]
11     \begin{center}
12     \includegraphics[width=0.75\linewidth]{abcdData.png}
13     \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
14     vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data. Here we also
15     show our choice of ABCD regions.}
16     \end{center}
17     \end{figure}
18    
19    
20     \begin{table}[hbt]
21     \begin{center}
22     \caption{\label{tab:datayield} Data yields in the four
23     regions of Figure~\ref{fig:abcdData}. We also show the
24     SM Monte Carlo expectations.}
25     \begin{tabular}{|l|c|c|c|c||c|}
26     \hline
27     &A & B & C & D & AC/D \\ \hline
28     Data &3 & 6 & 1 & 0 & $0.5^{+x}_{-y}$ \\
29     SM MC &2.5 &11.2 & 1.5 & 0.4 & 0.4 \\
30     \hline
31     \end{tabular}
32     \end{center}
33     \end{table}
34    
35    
36     There are
37     zero events in the signal region (region D).
38     As mentioned in Section~\ref{sec}, the number
39     of SM events expected events from Monte Carlo is 0.4.
40     The prediction of the ABCD method is 0.5
41     (see Table~\ref{tab:datayield}. There are no events
42     in the data in region D when $P_T(\ell \ell)$ is
43     substituted for \met; thus the $P_T(\ell \ell)$
44     method predicts a background of $0^{+x.x}_{-0.0}$
45     events. As a cross-check, we use the $P_T(\ell \ell)$
46     method to also predict the number of events in the
47     control region $120<{\rm SumJetPt}<300$ GeV and
48     \met/$\sqrt{\rm SumJetPt} > 8.5$. We predict
49     $5.6^{+x}_{-y}$ events and we observe 4.
50     {\color{red} (We need to make sure that this prediction
51     includes the 1.4 fudge factor).}
52    
53     To summarize: we see no evidence for an anomalous
54     rate of opposite sign isolated dilepton events
55     at high \met and high SumJetPt. The extraction of
56     quantitative limits on new physics models is discussed
57     in Section~\ref{sec:limits}.