1 |
benhoob |
1.7 |
\clearpage
|
2 |
|
|
|
3 |
claudioc |
1.1 |
\section{Results}
|
4 |
|
|
\label{sec:results}
|
5 |
|
|
|
6 |
|
|
\begin{figure}[tbh]
|
7 |
|
|
\begin{center}
|
8 |
benhoob |
1.7 |
\includegraphics[width=0.75\linewidth]{abcd_35pb.png}
|
9 |
claudioc |
1.1 |
\caption{\label{fig:abcdData}\protect Distributions of SumJetPt
|
10 |
|
|
vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data. Here we also
|
11 |
|
|
show our choice of ABCD regions.}
|
12 |
|
|
\end{center}
|
13 |
|
|
\end{figure}
|
14 |
|
|
|
15 |
claudioc |
1.2 |
The data, together with SM expectations is presented
|
16 |
benhoob |
1.7 |
in Figure~\ref{fig:abcdData}. We see 1 event in the
|
17 |
|
|
signal region (region $D$). The Standard Model MC
|
18 |
|
|
expectation is 1.4 events.
|
19 |
claudioc |
1.2 |
|
20 |
|
|
\subsection{Background estimate from the ABCD method}
|
21 |
|
|
\label{sec:abcdres}
|
22 |
|
|
|
23 |
|
|
The data yields in the
|
24 |
|
|
four regions are summarized in Table~\ref{tab:datayield}.
|
25 |
benhoob |
1.7 |
The prediction of the ABCD method is is given by $A\times C/B$ and
|
26 |
benhoob |
1.10 |
is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming
|
27 |
|
|
Gaussian errors). (see Table~\ref{tab:datayield}).
|
28 |
claudioc |
1.2 |
|
29 |
claudioc |
1.1 |
\begin{table}[hbt]
|
30 |
|
|
\begin{center}
|
31 |
|
|
\caption{\label{tab:datayield} Data yields in the four
|
32 |
benhoob |
1.7 |
regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
|
33 |
|
|
by A$\times$C / B. The quoted uncertainty
|
34 |
benhoob |
1.4 |
on the prediction in data is statistical only, assuming Gaussian errors.
|
35 |
benhoob |
1.7 |
We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
|
36 |
|
|
\begin{tabular}{l||c|c|c|c||c}
|
37 |
|
|
\hline
|
38 |
|
|
sample & A & B & C & D & A$\times$C / B \\
|
39 |
|
|
\hline
|
40 |
|
|
$t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 7.96 & 33.07 & 4.81 & 1.20 & 1.16 \\
|
41 |
|
|
$t\bar{t}\rightarrow \mathrm{other}$ & 0.15 & 0.85 & 0.09 & 0.04 & 0.02 \\
|
42 |
|
|
$Z^0$ + jets & 0.00 & 1.16 & 0.08 & 0.08 & 0.00 \\
|
43 |
|
|
$W^{\pm}$ + jets & 0.00 & 0.10 & 0.00 & 0.00 & 0.00 \\
|
44 |
|
|
$W^+W^-$ & 0.19 & 0.29 & 0.02 & 0.07 & 0.02 \\
|
45 |
|
|
$W^{\pm}Z^0$ & 0.03 & 0.04 & 0.01 & 0.01 & 0.00 \\
|
46 |
|
|
$Z^0Z^0$ & 0.00 & 0.03 & 0.00 & 0.00 & 0.00 \\
|
47 |
|
|
single top & 0.28 & 1.00 & 0.04 & 0.01 & 0.01 \\
|
48 |
|
|
\hline
|
49 |
|
|
total SM MC & 8.61 & 36.54 & 5.05 & 1.41 & 1.19 \\
|
50 |
claudioc |
1.1 |
\hline
|
51 |
benhoob |
1.7 |
data & 11 & 36 & 5 & 1 &1.53 $\pm$ 0.86 \\
|
52 |
claudioc |
1.1 |
\hline
|
53 |
|
|
\end{tabular}
|
54 |
|
|
\end{center}
|
55 |
|
|
\end{table}
|
56 |
|
|
|
57 |
claudioc |
1.3 |
%As a cross-check, we can subtract from the yields in
|
58 |
|
|
%Table~\ref{tab:datayield} the expected DY contributions
|
59 |
|
|
%from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
|
60 |
|
|
%estimate of the $t\bar{t}$ contribution. The result
|
61 |
|
|
%of this exercise is {\color{red} xx} events.
|
62 |
claudioc |
1.2 |
|
63 |
benhoob |
1.10 |
\clearpage
|
64 |
|
|
|
65 |
claudioc |
1.2 |
\subsection{Background estimate from the $P_T(\ell\ell)$ method}
|
66 |
|
|
\label{sec:victoryres}
|
67 |
|
|
|
68 |
|
|
The number of data events in region $D'$, which is defined in
|
69 |
|
|
Section~\ref{sec:othBG} to be the same as region $D$ but with the
|
70 |
|
|
$\met/\sqrt{\rm SumJetPt}$ requirement
|
71 |
|
|
replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
|
72 |
benhoob |
1.8 |
is $N_{D'}=2$. Thus the BG prediction is
|
73 |
benhoob |
1.6 |
$N_D = K \cdot K_C \cdot N_{D'} = 1.5$
|
74 |
|
|
where $K=1.5 \pm xx$ as derived in Sec.~\ref{sec:victory} and
|
75 |
|
|
$K_C = 1$.
|
76 |
claudioc |
1.2 |
Note that if we were to subtract off from region $D'$
|
77 |
benhoob |
1.8 |
the {\color{red} 0.8 $\pm$ 0.8} DY events estimated from
|
78 |
claudioc |
1.3 |
Section~\ref{sec:othBG}, the background
|
79 |
benhoob |
1.8 |
prediction would change to $N_D=1.8 \pm xx$ events.
|
80 |
benhoob |
1.4 |
|
81 |
|
|
%%%TO BE REPLACED
|
82 |
|
|
%{\color{red}As mentioned previously, for the 11/pb analysis
|
83 |
|
|
%we use the $K$ factor from data and take $K=1$.
|
84 |
|
|
%This will change for the full dataset. We will also pay
|
85 |
|
|
%more attention to the statistical errors.}
|
86 |
|
|
|
87 |
|
|
%The number of data events in region $D'$, which is defined in
|
88 |
|
|
%Section~\ref{sec:othBG} to be the same as region $D$ but with the
|
89 |
|
|
%$\met/\sqrt{\rm SumJetPt}$ requirement
|
90 |
|
|
%replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
|
91 |
|
|
%is $N_{D'}=1$. Thus the BG prediction is
|
92 |
|
|
%$N_D = K \cdot K_{\rm fudge} \cdot N_{D'} = 1.5$
|
93 |
|
|
%where we used $K=1.5 \pm xx$ and $K_{\rm fudge}=1.0 \pm 0.0$.
|
94 |
|
|
%Note that if we were to subtract off from region $D'$
|
95 |
|
|
%the {\color{red} 0.4 $\pm$ 0.4} DY events estimated from
|
96 |
|
|
%Section~\ref{sec:othBG}, the background
|
97 |
|
|
%prediction would change to $N_D=0.9 \pm xx$ events.
|
98 |
|
|
%{\color{red} When we do this with a real
|
99 |
|
|
%$K_{\rm fudge}$, the fudge factor will be different
|
100 |
|
|
%after the DY subtraction.}
|
101 |
claudioc |
1.1 |
|
102 |
claudioc |
1.2 |
As a cross-check, we use the $P_T(\ell \ell)$
|
103 |
claudioc |
1.1 |
method to also predict the number of events in the
|
104 |
benhoob |
1.8 |
control region $125<{\rm SumJetPt}<300$ GeV and
|
105 |
claudioc |
1.1 |
\met/$\sqrt{\rm SumJetPt} > 8.5$. We predict
|
106 |
|
|
$5.6^{+x}_{-y}$ events and we observe 4.
|
107 |
claudioc |
1.3 |
The results of the $P_T(\ell\ell)$ method are
|
108 |
|
|
summarized in Figure~\ref{fig:victory}.
|
109 |
claudioc |
1.1 |
|
110 |
claudioc |
1.3 |
\begin{figure}[hbt]
|
111 |
|
|
\begin{center}
|
112 |
benhoob |
1.8 |
\includegraphics[width=0.48\linewidth]{victory_control_35pb.png}
|
113 |
|
|
\includegraphics[width=0.48\linewidth]{victory_signal_35pb.png}
|
114 |
claudioc |
1.3 |
\caption{\label{fig:victory}\protect Distributions of
|
115 |
|
|
tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
|
116 |
|
|
We show the oberved distributions in both Monte Carlo and data.
|
117 |
|
|
We also show the distributions predicted from
|
118 |
benhoob |
1.4 |
${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.}
|
119 |
claudioc |
1.3 |
\end{center}
|
120 |
|
|
\end{figure}
|
121 |
|
|
|
122 |
|
|
|
123 |
benhoob |
1.9 |
\begin{table}[hbt]
|
124 |
|
|
\begin{center}
|
125 |
|
|
\label{tab:victory_control}
|
126 |
|
|
\caption{Results of the dilepton $p_{T}$ template method in the control region
|
127 |
|
|
$125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
|
128 |
|
|
the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
|
129 |
|
|
and MC. The error on the prediction for data is statistical only, assuming
|
130 |
|
|
Gaussian errors.}
|
131 |
|
|
\begin{tabular}{l|c|c|c}
|
132 |
|
|
\hline
|
133 |
|
|
& Predicted & Observed & Obs/Pred \\
|
134 |
|
|
\hline
|
135 |
|
|
total SM MC & 7.10 & 8.61 & 1.21 \\
|
136 |
|
|
data & 10.38 $\pm$ 4.24 & 11 & 1.06 \\
|
137 |
|
|
\hline
|
138 |
|
|
\end{tabular}
|
139 |
|
|
\end{center}
|
140 |
|
|
\end{table}
|
141 |
|
|
|
142 |
|
|
\begin{table}[hbt]
|
143 |
|
|
\begin{center}
|
144 |
|
|
\label{tab:victory_control}
|
145 |
|
|
\caption{Results of the dilepton $p_{T}$ template method in the signal region
|
146 |
|
|
$125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
|
147 |
|
|
the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
|
148 |
|
|
and MC. The error on the prediction for data is statistical only, assuming
|
149 |
|
|
Gaussian errors.}
|
150 |
|
|
\begin{tabular}{l|c|c|c}
|
151 |
|
|
\hline
|
152 |
|
|
& Predicted & Observed & Obs/Pred \\
|
153 |
|
|
\hline
|
154 |
|
|
total SM MC & 0.96 & 1.41 & 1.46 \\
|
155 |
|
|
data & 3.07 $\pm$ 2.17 & 1 & 0.33 \\
|
156 |
|
|
\hline
|
157 |
|
|
\end{tabular}
|
158 |
|
|
\end{center}
|
159 |
|
|
\end{table}
|
160 |
|
|
|
161 |
|
|
|
162 |
claudioc |
1.3 |
\subsection{Summary of results}
|
163 |
claudioc |
1.1 |
To summarize: we see no evidence for an anomalous
|
164 |
|
|
rate of opposite sign isolated dilepton events
|
165 |
|
|
at high \met and high SumJetPt. The extraction of
|
166 |
|
|
quantitative limits on new physics models is discussed
|
167 |
benhoob |
1.5 |
in Section~\ref{sec:limit}. |