ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
Revision: 1.13
Committed: Thu Nov 11 16:59:39 2010 UTC (14 years, 6 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
Changes since 1.12: +13 -14 lines
Log Message:
Updates

File Contents

# User Rev Content
1 benhoob 1.7 \clearpage
2    
3 claudioc 1.1 \section{Results}
4     \label{sec:results}
5    
6     \begin{figure}[tbh]
7     \begin{center}
8 benhoob 1.7 \includegraphics[width=0.75\linewidth]{abcd_35pb.png}
9 claudioc 1.1 \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
10     vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data. Here we also
11     show our choice of ABCD regions.}
12     \end{center}
13     \end{figure}
14    
15 claudioc 1.2 The data, together with SM expectations is presented
16 benhoob 1.7 in Figure~\ref{fig:abcdData}. We see 1 event in the
17     signal region (region $D$). The Standard Model MC
18     expectation is 1.4 events.
19 claudioc 1.2
20     \subsection{Background estimate from the ABCD method}
21     \label{sec:abcdres}
22    
23     The data yields in the
24     four regions are summarized in Table~\ref{tab:datayield}.
25 benhoob 1.7 The prediction of the ABCD method is is given by $A\times C/B$ and
26 benhoob 1.10 is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming
27 benhoob 1.13 Gaussian errors), as shown in Table~\ref{tab:datayield}.
28 claudioc 1.2
29 claudioc 1.1 \begin{table}[hbt]
30     \begin{center}
31     \caption{\label{tab:datayield} Data yields in the four
32 benhoob 1.7 regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
33     by A$\times$C / B. The quoted uncertainty
34 benhoob 1.4 on the prediction in data is statistical only, assuming Gaussian errors.
35 benhoob 1.7 We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
36     \begin{tabular}{l||c|c|c|c||c}
37     \hline
38     sample & A & B & C & D & A$\times$C / B \\
39     \hline
40     $t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 7.96 & 33.07 & 4.81 & 1.20 & 1.16 \\
41     $t\bar{t}\rightarrow \mathrm{other}$ & 0.15 & 0.85 & 0.09 & 0.04 & 0.02 \\
42     $Z^0$ + jets & 0.00 & 1.16 & 0.08 & 0.08 & 0.00 \\
43     $W^{\pm}$ + jets & 0.00 & 0.10 & 0.00 & 0.00 & 0.00 \\
44     $W^+W^-$ & 0.19 & 0.29 & 0.02 & 0.07 & 0.02 \\
45     $W^{\pm}Z^0$ & 0.03 & 0.04 & 0.01 & 0.01 & 0.00 \\
46     $Z^0Z^0$ & 0.00 & 0.03 & 0.00 & 0.00 & 0.00 \\
47     single top & 0.28 & 1.00 & 0.04 & 0.01 & 0.01 \\
48     \hline
49     total SM MC & 8.61 & 36.54 & 5.05 & 1.41 & 1.19 \\
50 claudioc 1.1 \hline
51 benhoob 1.7 data & 11 & 36 & 5 & 1 &1.53 $\pm$ 0.86 \\
52 claudioc 1.1 \hline
53     \end{tabular}
54     \end{center}
55     \end{table}
56    
57 claudioc 1.3 %As a cross-check, we can subtract from the yields in
58     %Table~\ref{tab:datayield} the expected DY contributions
59     %from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
60     %estimate of the $t\bar{t}$ contribution. The result
61     %of this exercise is {\color{red} xx} events.
62 claudioc 1.2
63 benhoob 1.10 \clearpage
64    
65 claudioc 1.2 \subsection{Background estimate from the $P_T(\ell\ell)$ method}
66     \label{sec:victoryres}
67    
68 benhoob 1.11 We first use the $P_T(\ell \ell)$ method to predict the number of events
69 benhoob 1.12 in control region A, defined in Sec.~\ref{sec:abcd} as
70     $125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5.
71     We count the number of events in region
72     $A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
73     cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
74     and find $N_{A'}=6$. To predict the yield in region A we take
75     $N_A = K \cdot K_C \cdot N_{A'} = 10.4 \pm 4.2$
76 benhoob 1.11 (statistical uncertainty only, assuming Gaussian errors),
77     where we have taken $K = 1.73$ and $K_C = 1$. This yield is in good
78     agreement with the observed yield of 11 events, as shown in
79     Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left).
80 benhoob 1.12 {\color{red} \bf Perform DY estimate for this control region}.
81 benhoob 1.11
82     Encouraged by the good agreement between predicted and observed yields
83     in the control region, we proceed to perform the $P_T(\ell \ell)$ method
84     in the signal region ${\rm SumJetPt}>300$~GeV.
85 claudioc 1.2 The number of data events in region $D'$, which is defined in
86     Section~\ref{sec:othBG} to be the same as region $D$ but with the
87     $\met/\sqrt{\rm SumJetPt}$ requirement
88 benhoob 1.11 replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
89 benhoob 1.13 is $N_{D'}=2$.
90     We next subtract off the expected DY contribution of
91     {\color{red} \bf $N_{DY}$ = 0.8 $\pm$ 0.8 (update DY estimate)} events, as calculated
92     in Sec.~\ref{sec:othBG}. The BG prediction is
93     $N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 1.8^{+2.5}_{-1.8}$ (statistical
94     uncertainty only, assuming Gaussian errors), where $K=1.54 \pm xx$
95 benhoob 1.11 as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
96 benhoob 1.13 This prediction is consistent with the observed yield of
97 benhoob 1.12 1 event, as summarized in Table~\ref{tab:victory_signal} and Fig.~\ref{fig:victory}
98     (right).
99 benhoob 1.11
100 claudioc 1.1
101 claudioc 1.3 \begin{figure}[hbt]
102     \begin{center}
103 benhoob 1.8 \includegraphics[width=0.48\linewidth]{victory_control_35pb.png}
104     \includegraphics[width=0.48\linewidth]{victory_signal_35pb.png}
105 claudioc 1.3 \caption{\label{fig:victory}\protect Distributions of
106     tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
107     We show the oberved distributions in both Monte Carlo and data.
108     We also show the distributions predicted from
109 benhoob 1.4 ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.}
110 claudioc 1.3 \end{center}
111     \end{figure}
112    
113    
114 benhoob 1.9 \begin{table}[hbt]
115     \begin{center}
116 benhoob 1.13 \caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region
117 benhoob 1.9 $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
118     the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
119     and MC. The error on the prediction for data is statistical only, assuming
120     Gaussian errors.}
121 benhoob 1.13 \begin{tabular}{lccc}
122 benhoob 1.9 \hline
123     & Predicted & Observed & Obs/Pred \\
124     \hline
125     total SM MC & 7.10 & 8.61 & 1.21 \\
126     data & 10.38 $\pm$ 4.24 & 11 & 1.06 \\
127     \hline
128     \end{tabular}
129     \end{center}
130     \end{table}
131    
132     \begin{table}[hbt]
133     \begin{center}
134 benhoob 1.13 \caption{\label{tab:victory_signal}Results of the dilepton $p_{T}$ template method in the signal region
135     $\mathrm{sumJetPt} > 300$~GeV. The predicted and observed yields for
136 benhoob 1.9 the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
137     and MC. The error on the prediction for data is statistical only, assuming
138     Gaussian errors.}
139 benhoob 1.13 \begin{tabular}{lccc}
140 benhoob 1.9 \hline
141 benhoob 1.11 & Predicted & Observed & Obs/Pred \\
142 benhoob 1.9 \hline
143 benhoob 1.11 total SM MC & 0.96 & 1.41 & 1.46 \\
144 benhoob 1.12 data & $1.8^{+2.5}_{-1.8}$ & 1 & 0.56 \\
145 benhoob 1.9 \hline
146     \end{tabular}
147     \end{center}
148     \end{table}
149    
150    
151 claudioc 1.3 \subsection{Summary of results}
152 claudioc 1.1 To summarize: we see no evidence for an anomalous
153     rate of opposite sign isolated dilepton events
154     at high \met and high SumJetPt. The extraction of
155     quantitative limits on new physics models is discussed
156 benhoob 1.5 in Section~\ref{sec:limit}.