ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
Revision: 1.17
Committed: Sun Nov 14 13:47:56 2010 UTC (14 years, 5 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
Changes since 1.16: +3 -2 lines
Log Message:
Info on candidate event

File Contents

# User Rev Content
1 benhoob 1.7 \clearpage
2    
3 claudioc 1.1 \section{Results}
4     \label{sec:results}
5    
6     \begin{figure}[tbh]
7     \begin{center}
8 benhoob 1.7 \includegraphics[width=0.75\linewidth]{abcd_35pb.png}
9 claudioc 1.1 \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
10     vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data. Here we also
11     show our choice of ABCD regions.}
12     \end{center}
13     \end{figure}
14    
15 claudioc 1.2 The data, together with SM expectations is presented
16 benhoob 1.7 in Figure~\ref{fig:abcdData}. We see 1 event in the
17 claudioc 1.17 signal region (region $D$). For more information about
18     this one candidate events, see Appendix~\ref{sec:cand}.
19     The Standard Model MC expectation is 1.4 events.
20 claudioc 1.2
21     \subsection{Background estimate from the ABCD method}
22     \label{sec:abcdres}
23    
24     The data yields in the
25     four regions are summarized in Table~\ref{tab:datayield}.
26 benhoob 1.7 The prediction of the ABCD method is is given by $A\times C/B$ and
27 benhoob 1.10 is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming
28 benhoob 1.13 Gaussian errors), as shown in Table~\ref{tab:datayield}.
29 claudioc 1.2
30 claudioc 1.1 \begin{table}[hbt]
31     \begin{center}
32     \caption{\label{tab:datayield} Data yields in the four
33 benhoob 1.7 regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
34 benhoob 1.14 by A $\times$C / B. The quoted uncertainty
35 benhoob 1.4 on the prediction in data is statistical only, assuming Gaussian errors.
36 benhoob 1.7 We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
37     \begin{tabular}{l||c|c|c|c||c}
38     \hline
39 benhoob 1.14 sample & A & B & C & D & A $\times$ C / B \\
40 benhoob 1.7 \hline
41 benhoob 1.14
42 benhoob 1.7 $t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 7.96 & 33.07 & 4.81 & 1.20 & 1.16 \\
43 benhoob 1.14 $t\bar{t}\rightarrow \mathrm{other}$ & 0.15 & 0.85 & 0.09 & 0.04 & 0.02 \\
44     $Z^0 \rightarrow \ell^{+}\ell^{-}$ & 0.03 & 1.47 & 0.10 & 0.10 & 0.00 \\
45     $W^{\pm}$ + jets & 0.00 & 0.10 & 0.00 & 0.00 & 0.00 \\
46     $W^+W^-$ & 0.19 & 0.29 & 0.02 & 0.07 & 0.02 \\
47     $W^{\pm}Z^0$ & 0.03 & 0.04 & 0.01 & 0.01 & 0.00 \\
48     $Z^0Z^0$ & 0.00 & 0.03 & 0.00 & 0.00 & 0.00 \\
49     single top & 0.28 & 1.00 & 0.04 & 0.01 & 0.01 \\
50 benhoob 1.7 \hline
51 benhoob 1.14 total SM MC & 8.63 & 36.85 & 5.07 & 1.43 & 1.19 \\
52 claudioc 1.1 \hline
53 benhoob 1.14 data & 11 & 36 & 5 & 1 & $1.53\pm0.86$ \\
54 claudioc 1.1 \hline
55     \end{tabular}
56     \end{center}
57     \end{table}
58    
59 claudioc 1.3 %As a cross-check, we can subtract from the yields in
60     %Table~\ref{tab:datayield} the expected DY contributions
61     %from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
62     %estimate of the $t\bar{t}$ contribution. The result
63     %of this exercise is {\color{red} xx} events.
64 claudioc 1.2
65 benhoob 1.10 \clearpage
66    
67 claudioc 1.2 \subsection{Background estimate from the $P_T(\ell\ell)$ method}
68     \label{sec:victoryres}
69    
70 benhoob 1.11 We first use the $P_T(\ell \ell)$ method to predict the number of events
71 benhoob 1.12 in control region A, defined in Sec.~\ref{sec:abcd} as
72     $125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5.
73     We count the number of events in region
74     $A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
75     cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
76 benhoob 1.15 and find $N_{A'}=6$. We subtract off the expected DY contribution in this region
77     $N_{DY} = 2.5 \pm 2.4$, derived in Sec.~\ref{sec:othBG}.
78     To predict the yield in region A we take
79     $N_A = K \cdot K_C \cdot ( N_{A'} - N_{DY} ) = 6.1 \pm 6.0$
80 benhoob 1.11 (statistical uncertainty only, assuming Gaussian errors),
81 benhoob 1.15 where we have taken $K = 1.73$ and $K_C = 1$. This yield is consistent
82     with the observed yield of 11 events, as shown in
83 benhoob 1.11 Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left).
84    
85     Encouraged by the good agreement between predicted and observed yields
86     in the control region, we proceed to perform the $P_T(\ell \ell)$ method
87     in the signal region ${\rm SumJetPt}>300$~GeV.
88 claudioc 1.2 The number of data events in region $D'$, which is defined in
89     Section~\ref{sec:othBG} to be the same as region $D$ but with the
90     $\met/\sqrt{\rm SumJetPt}$ requirement
91 benhoob 1.11 replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
92 benhoob 1.13 is $N_{D'}=2$.
93     We next subtract off the expected DY contribution of
94 benhoob 1.14 $N_{DY}$ = $0.4 \pm 0.4$ events, as calculated
95 benhoob 1.13 in Sec.~\ref{sec:othBG}. The BG prediction is
96 benhoob 1.14 $N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 2.5 \pm 2.2$ (statistical
97 benhoob 1.13 uncertainty only, assuming Gaussian errors), where $K=1.54 \pm xx$
98 benhoob 1.11 as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
99 benhoob 1.13 This prediction is consistent with the observed yield of
100 benhoob 1.12 1 event, as summarized in Table~\ref{tab:victory_signal} and Fig.~\ref{fig:victory}
101     (right).
102 benhoob 1.11
103 claudioc 1.1
104 claudioc 1.3 \begin{figure}[hbt]
105     \begin{center}
106 benhoob 1.8 \includegraphics[width=0.48\linewidth]{victory_control_35pb.png}
107     \includegraphics[width=0.48\linewidth]{victory_signal_35pb.png}
108 claudioc 1.3 \caption{\label{fig:victory}\protect Distributions of
109     tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
110     We show the oberved distributions in both Monte Carlo and data.
111     We also show the distributions predicted from
112 benhoob 1.4 ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.}
113 claudioc 1.3 \end{center}
114     \end{figure}
115    
116    
117 benhoob 1.14
118 benhoob 1.9 \begin{table}[hbt]
119     \begin{center}
120 benhoob 1.13 \caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region
121 benhoob 1.9 $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
122     the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
123     and MC. The error on the prediction for data is statistical only, assuming
124     Gaussian errors.}
125 benhoob 1.13 \begin{tabular}{lccc}
126 benhoob 1.9 \hline
127     & Predicted & Observed & Obs/Pred \\
128     \hline
129 benhoob 1.14 total SM MC & 7.18 & 8.63 & 1.20 \\
130 benhoob 1.16 data & $6.06 \pm 5.95$ & 11 & 1.82 \\
131 benhoob 1.9 \hline
132     \end{tabular}
133     \end{center}
134     \end{table}
135    
136     \begin{table}[hbt]
137     \begin{center}
138 benhoob 1.13 \caption{\label{tab:victory_signal}Results of the dilepton $p_{T}$ template method in the signal region
139     $\mathrm{sumJetPt} > 300$~GeV. The predicted and observed yields for
140 benhoob 1.9 the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
141     and MC. The error on the prediction for data is statistical only, assuming
142     Gaussian errors.}
143 benhoob 1.13 \begin{tabular}{lccc}
144 benhoob 1.9 \hline
145 benhoob 1.11 & Predicted & Observed & Obs/Pred \\
146 benhoob 1.9 \hline
147 benhoob 1.14 total SM MC & 1.03 & 1.43 & 1.38 \\
148     data & $2.53 \pm 2.25$ & 1 & 0.40 \\
149 benhoob 1.9 \hline
150     \end{tabular}
151     \end{center}
152     \end{table}
153    
154    
155 claudioc 1.3 \subsection{Summary of results}
156 claudioc 1.1 To summarize: we see no evidence for an anomalous
157     rate of opposite sign isolated dilepton events
158     at high \met and high SumJetPt. The extraction of
159     quantitative limits on new physics models is discussed
160 benhoob 1.5 in Section~\ref{sec:limit}.