1 |
benhoob |
1.7 |
\clearpage
|
2 |
|
|
|
3 |
claudioc |
1.1 |
\section{Results}
|
4 |
|
|
\label{sec:results}
|
5 |
|
|
|
6 |
|
|
\begin{figure}[tbh]
|
7 |
|
|
\begin{center}
|
8 |
benhoob |
1.7 |
\includegraphics[width=0.75\linewidth]{abcd_35pb.png}
|
9 |
claudioc |
1.1 |
\caption{\label{fig:abcdData}\protect Distributions of SumJetPt
|
10 |
|
|
vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data. Here we also
|
11 |
|
|
show our choice of ABCD regions.}
|
12 |
|
|
\end{center}
|
13 |
|
|
\end{figure}
|
14 |
|
|
|
15 |
claudioc |
1.2 |
The data, together with SM expectations is presented
|
16 |
benhoob |
1.7 |
in Figure~\ref{fig:abcdData}. We see 1 event in the
|
17 |
claudioc |
1.17 |
signal region (region $D$). For more information about
|
18 |
|
|
this one candidate events, see Appendix~\ref{sec:cand}.
|
19 |
|
|
The Standard Model MC expectation is 1.4 events.
|
20 |
claudioc |
1.2 |
|
21 |
|
|
\subsection{Background estimate from the ABCD method}
|
22 |
|
|
\label{sec:abcdres}
|
23 |
|
|
|
24 |
|
|
The data yields in the
|
25 |
|
|
four regions are summarized in Table~\ref{tab:datayield}.
|
26 |
benhoob |
1.7 |
The prediction of the ABCD method is is given by $A\times C/B$ and
|
27 |
benhoob |
1.18 |
is $1.5 \pm 0.9(stat) \pm 0.2(syst)$ events, as shown in Table~\ref{tab:datayield}.
|
28 |
claudioc |
1.2 |
|
29 |
claudioc |
1.1 |
\begin{table}[hbt]
|
30 |
|
|
\begin{center}
|
31 |
|
|
\caption{\label{tab:datayield} Data yields in the four
|
32 |
benhoob |
1.7 |
regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
|
33 |
benhoob |
1.14 |
by A $\times$C / B. The quoted uncertainty
|
34 |
benhoob |
1.4 |
on the prediction in data is statistical only, assuming Gaussian errors.
|
35 |
benhoob |
1.7 |
We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
|
36 |
|
|
\begin{tabular}{l||c|c|c|c||c}
|
37 |
|
|
\hline
|
38 |
benhoob |
1.14 |
sample & A & B & C & D & A $\times$ C / B \\
|
39 |
benhoob |
1.7 |
\hline
|
40 |
benhoob |
1.14 |
|
41 |
benhoob |
1.7 |
$t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 7.96 & 33.07 & 4.81 & 1.20 & 1.16 \\
|
42 |
benhoob |
1.14 |
$t\bar{t}\rightarrow \mathrm{other}$ & 0.15 & 0.85 & 0.09 & 0.04 & 0.02 \\
|
43 |
|
|
$Z^0 \rightarrow \ell^{+}\ell^{-}$ & 0.03 & 1.47 & 0.10 & 0.10 & 0.00 \\
|
44 |
|
|
$W^{\pm}$ + jets & 0.00 & 0.10 & 0.00 & 0.00 & 0.00 \\
|
45 |
|
|
$W^+W^-$ & 0.19 & 0.29 & 0.02 & 0.07 & 0.02 \\
|
46 |
|
|
$W^{\pm}Z^0$ & 0.03 & 0.04 & 0.01 & 0.01 & 0.00 \\
|
47 |
|
|
$Z^0Z^0$ & 0.00 & 0.03 & 0.00 & 0.00 & 0.00 \\
|
48 |
|
|
single top & 0.28 & 1.00 & 0.04 & 0.01 & 0.01 \\
|
49 |
benhoob |
1.7 |
\hline
|
50 |
benhoob |
1.14 |
total SM MC & 8.63 & 36.85 & 5.07 & 1.43 & 1.19 \\
|
51 |
claudioc |
1.1 |
\hline
|
52 |
benhoob |
1.18 |
data & 11 & 36 & 5 & 1 & $1.53 \pm 0.86(stat) \pm 0.15(syst)$ \\
|
53 |
claudioc |
1.1 |
\hline
|
54 |
|
|
\end{tabular}
|
55 |
|
|
\end{center}
|
56 |
|
|
\end{table}
|
57 |
|
|
|
58 |
claudioc |
1.3 |
%As a cross-check, we can subtract from the yields in
|
59 |
|
|
%Table~\ref{tab:datayield} the expected DY contributions
|
60 |
|
|
%from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
|
61 |
|
|
%estimate of the $t\bar{t}$ contribution. The result
|
62 |
|
|
%of this exercise is {\color{red} xx} events.
|
63 |
claudioc |
1.2 |
|
64 |
benhoob |
1.10 |
\clearpage
|
65 |
|
|
|
66 |
claudioc |
1.2 |
\subsection{Background estimate from the $P_T(\ell\ell)$ method}
|
67 |
|
|
\label{sec:victoryres}
|
68 |
|
|
|
69 |
benhoob |
1.11 |
We first use the $P_T(\ell \ell)$ method to predict the number of events
|
70 |
benhoob |
1.12 |
in control region A, defined in Sec.~\ref{sec:abcd} as
|
71 |
benhoob |
1.19 |
$125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5~GeV$^{1/2}$.
|
72 |
benhoob |
1.12 |
We count the number of events in region
|
73 |
|
|
$A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
|
74 |
|
|
cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
|
75 |
benhoob |
1.15 |
and find $N_{A'}=6$. We subtract off the expected DY contribution in this region
|
76 |
|
|
$N_{DY} = 2.5 \pm 2.4$, derived in Sec.~\ref{sec:othBG}.
|
77 |
|
|
To predict the yield in region A we take
|
78 |
|
|
$N_A = K \cdot K_C \cdot ( N_{A'} - N_{DY} ) = 6.1 \pm 6.0$
|
79 |
benhoob |
1.11 |
(statistical uncertainty only, assuming Gaussian errors),
|
80 |
benhoob |
1.15 |
where we have taken $K = 1.73$ and $K_C = 1$. This yield is consistent
|
81 |
|
|
with the observed yield of 11 events, as shown in
|
82 |
benhoob |
1.11 |
Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left).
|
83 |
|
|
|
84 |
|
|
Encouraged by the good agreement between predicted and observed yields
|
85 |
|
|
in the control region, we proceed to perform the $P_T(\ell \ell)$ method
|
86 |
|
|
in the signal region ${\rm SumJetPt}>300$~GeV.
|
87 |
claudioc |
1.2 |
The number of data events in region $D'$, which is defined in
|
88 |
|
|
Section~\ref{sec:othBG} to be the same as region $D$ but with the
|
89 |
|
|
$\met/\sqrt{\rm SumJetPt}$ requirement
|
90 |
benhoob |
1.11 |
replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
|
91 |
benhoob |
1.13 |
is $N_{D'}=2$.
|
92 |
|
|
We next subtract off the expected DY contribution of
|
93 |
benhoob |
1.14 |
$N_{DY}$ = $0.4 \pm 0.4$ events, as calculated
|
94 |
benhoob |
1.13 |
in Sec.~\ref{sec:othBG}. The BG prediction is
|
95 |
benhoob |
1.14 |
$N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 2.5 \pm 2.2$ (statistical
|
96 |
benhoob |
1.13 |
uncertainty only, assuming Gaussian errors), where $K=1.54 \pm xx$
|
97 |
benhoob |
1.11 |
as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
|
98 |
benhoob |
1.13 |
This prediction is consistent with the observed yield of
|
99 |
benhoob |
1.12 |
1 event, as summarized in Table~\ref{tab:victory_signal} and Fig.~\ref{fig:victory}
|
100 |
|
|
(right).
|
101 |
benhoob |
1.11 |
|
102 |
claudioc |
1.1 |
|
103 |
claudioc |
1.3 |
\begin{figure}[hbt]
|
104 |
|
|
\begin{center}
|
105 |
benhoob |
1.8 |
\includegraphics[width=0.48\linewidth]{victory_control_35pb.png}
|
106 |
|
|
\includegraphics[width=0.48\linewidth]{victory_signal_35pb.png}
|
107 |
claudioc |
1.3 |
\caption{\label{fig:victory}\protect Distributions of
|
108 |
|
|
tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
|
109 |
|
|
We show the oberved distributions in both Monte Carlo and data.
|
110 |
|
|
We also show the distributions predicted from
|
111 |
benhoob |
1.4 |
${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.}
|
112 |
claudioc |
1.3 |
\end{center}
|
113 |
|
|
\end{figure}
|
114 |
|
|
|
115 |
|
|
|
116 |
benhoob |
1.14 |
|
117 |
benhoob |
1.9 |
\begin{table}[hbt]
|
118 |
|
|
\begin{center}
|
119 |
benhoob |
1.13 |
\caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region
|
120 |
benhoob |
1.19 |
$125 < \mathrm{sumJetPt} < 300$~GeV$^{1/2}$. The predicted and observed yields for
|
121 |
benhoob |
1.9 |
the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
|
122 |
|
|
and MC. The error on the prediction for data is statistical only, assuming
|
123 |
|
|
Gaussian errors.}
|
124 |
benhoob |
1.13 |
\begin{tabular}{lccc}
|
125 |
benhoob |
1.9 |
\hline
|
126 |
|
|
& Predicted & Observed & Obs/Pred \\
|
127 |
|
|
\hline
|
128 |
benhoob |
1.14 |
total SM MC & 7.18 & 8.63 & 1.20 \\
|
129 |
benhoob |
1.16 |
data & $6.06 \pm 5.95$ & 11 & 1.82 \\
|
130 |
benhoob |
1.9 |
\hline
|
131 |
|
|
\end{tabular}
|
132 |
|
|
\end{center}
|
133 |
|
|
\end{table}
|
134 |
|
|
|
135 |
|
|
\begin{table}[hbt]
|
136 |
|
|
\begin{center}
|
137 |
benhoob |
1.13 |
\caption{\label{tab:victory_signal}Results of the dilepton $p_{T}$ template method in the signal region
|
138 |
benhoob |
1.19 |
$\mathrm{sumJetPt} > 300$~GeV$^{1/2}$. The predicted and observed yields for
|
139 |
benhoob |
1.9 |
the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
|
140 |
|
|
and MC. The error on the prediction for data is statistical only, assuming
|
141 |
|
|
Gaussian errors.}
|
142 |
benhoob |
1.13 |
\begin{tabular}{lccc}
|
143 |
benhoob |
1.9 |
\hline
|
144 |
benhoob |
1.11 |
& Predicted & Observed & Obs/Pred \\
|
145 |
benhoob |
1.9 |
\hline
|
146 |
benhoob |
1.14 |
total SM MC & 1.03 & 1.43 & 1.38 \\
|
147 |
|
|
data & $2.53 \pm 2.25$ & 1 & 0.40 \\
|
148 |
benhoob |
1.9 |
\hline
|
149 |
|
|
\end{tabular}
|
150 |
|
|
\end{center}
|
151 |
|
|
\end{table}
|
152 |
|
|
|
153 |
|
|
|
154 |
claudioc |
1.3 |
\subsection{Summary of results}
|
155 |
claudioc |
1.1 |
To summarize: we see no evidence for an anomalous
|
156 |
|
|
rate of opposite sign isolated dilepton events
|
157 |
|
|
at high \met and high SumJetPt. The extraction of
|
158 |
|
|
quantitative limits on new physics models is discussed
|
159 |
benhoob |
1.5 |
in Section~\ref{sec:limit}. |