ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
Revision: 1.19
Committed: Mon Nov 15 10:19:58 2010 UTC (14 years, 5 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
Changes since 1.18: +3 -3 lines
Log Message:
Minor updates

File Contents

# User Rev Content
1 benhoob 1.7 \clearpage
2    
3 claudioc 1.1 \section{Results}
4     \label{sec:results}
5    
6     \begin{figure}[tbh]
7     \begin{center}
8 benhoob 1.7 \includegraphics[width=0.75\linewidth]{abcd_35pb.png}
9 claudioc 1.1 \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
10     vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data. Here we also
11     show our choice of ABCD regions.}
12     \end{center}
13     \end{figure}
14    
15 claudioc 1.2 The data, together with SM expectations is presented
16 benhoob 1.7 in Figure~\ref{fig:abcdData}. We see 1 event in the
17 claudioc 1.17 signal region (region $D$). For more information about
18     this one candidate events, see Appendix~\ref{sec:cand}.
19     The Standard Model MC expectation is 1.4 events.
20 claudioc 1.2
21     \subsection{Background estimate from the ABCD method}
22     \label{sec:abcdres}
23    
24     The data yields in the
25     four regions are summarized in Table~\ref{tab:datayield}.
26 benhoob 1.7 The prediction of the ABCD method is is given by $A\times C/B$ and
27 benhoob 1.18 is $1.5 \pm 0.9(stat) \pm 0.2(syst)$ events, as shown in Table~\ref{tab:datayield}.
28 claudioc 1.2
29 claudioc 1.1 \begin{table}[hbt]
30     \begin{center}
31     \caption{\label{tab:datayield} Data yields in the four
32 benhoob 1.7 regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
33 benhoob 1.14 by A $\times$C / B. The quoted uncertainty
34 benhoob 1.4 on the prediction in data is statistical only, assuming Gaussian errors.
35 benhoob 1.7 We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
36     \begin{tabular}{l||c|c|c|c||c}
37     \hline
38 benhoob 1.14 sample & A & B & C & D & A $\times$ C / B \\
39 benhoob 1.7 \hline
40 benhoob 1.14
41 benhoob 1.7 $t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 7.96 & 33.07 & 4.81 & 1.20 & 1.16 \\
42 benhoob 1.14 $t\bar{t}\rightarrow \mathrm{other}$ & 0.15 & 0.85 & 0.09 & 0.04 & 0.02 \\
43     $Z^0 \rightarrow \ell^{+}\ell^{-}$ & 0.03 & 1.47 & 0.10 & 0.10 & 0.00 \\
44     $W^{\pm}$ + jets & 0.00 & 0.10 & 0.00 & 0.00 & 0.00 \\
45     $W^+W^-$ & 0.19 & 0.29 & 0.02 & 0.07 & 0.02 \\
46     $W^{\pm}Z^0$ & 0.03 & 0.04 & 0.01 & 0.01 & 0.00 \\
47     $Z^0Z^0$ & 0.00 & 0.03 & 0.00 & 0.00 & 0.00 \\
48     single top & 0.28 & 1.00 & 0.04 & 0.01 & 0.01 \\
49 benhoob 1.7 \hline
50 benhoob 1.14 total SM MC & 8.63 & 36.85 & 5.07 & 1.43 & 1.19 \\
51 claudioc 1.1 \hline
52 benhoob 1.18 data & 11 & 36 & 5 & 1 & $1.53 \pm 0.86(stat) \pm 0.15(syst)$ \\
53 claudioc 1.1 \hline
54     \end{tabular}
55     \end{center}
56     \end{table}
57    
58 claudioc 1.3 %As a cross-check, we can subtract from the yields in
59     %Table~\ref{tab:datayield} the expected DY contributions
60     %from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
61     %estimate of the $t\bar{t}$ contribution. The result
62     %of this exercise is {\color{red} xx} events.
63 claudioc 1.2
64 benhoob 1.10 \clearpage
65    
66 claudioc 1.2 \subsection{Background estimate from the $P_T(\ell\ell)$ method}
67     \label{sec:victoryres}
68    
69 benhoob 1.11 We first use the $P_T(\ell \ell)$ method to predict the number of events
70 benhoob 1.12 in control region A, defined in Sec.~\ref{sec:abcd} as
71 benhoob 1.19 $125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5~GeV$^{1/2}$.
72 benhoob 1.12 We count the number of events in region
73     $A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
74     cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
75 benhoob 1.15 and find $N_{A'}=6$. We subtract off the expected DY contribution in this region
76     $N_{DY} = 2.5 \pm 2.4$, derived in Sec.~\ref{sec:othBG}.
77     To predict the yield in region A we take
78     $N_A = K \cdot K_C \cdot ( N_{A'} - N_{DY} ) = 6.1 \pm 6.0$
79 benhoob 1.11 (statistical uncertainty only, assuming Gaussian errors),
80 benhoob 1.15 where we have taken $K = 1.73$ and $K_C = 1$. This yield is consistent
81     with the observed yield of 11 events, as shown in
82 benhoob 1.11 Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left).
83    
84     Encouraged by the good agreement between predicted and observed yields
85     in the control region, we proceed to perform the $P_T(\ell \ell)$ method
86     in the signal region ${\rm SumJetPt}>300$~GeV.
87 claudioc 1.2 The number of data events in region $D'$, which is defined in
88     Section~\ref{sec:othBG} to be the same as region $D$ but with the
89     $\met/\sqrt{\rm SumJetPt}$ requirement
90 benhoob 1.11 replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
91 benhoob 1.13 is $N_{D'}=2$.
92     We next subtract off the expected DY contribution of
93 benhoob 1.14 $N_{DY}$ = $0.4 \pm 0.4$ events, as calculated
94 benhoob 1.13 in Sec.~\ref{sec:othBG}. The BG prediction is
95 benhoob 1.14 $N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 2.5 \pm 2.2$ (statistical
96 benhoob 1.13 uncertainty only, assuming Gaussian errors), where $K=1.54 \pm xx$
97 benhoob 1.11 as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
98 benhoob 1.13 This prediction is consistent with the observed yield of
99 benhoob 1.12 1 event, as summarized in Table~\ref{tab:victory_signal} and Fig.~\ref{fig:victory}
100     (right).
101 benhoob 1.11
102 claudioc 1.1
103 claudioc 1.3 \begin{figure}[hbt]
104     \begin{center}
105 benhoob 1.8 \includegraphics[width=0.48\linewidth]{victory_control_35pb.png}
106     \includegraphics[width=0.48\linewidth]{victory_signal_35pb.png}
107 claudioc 1.3 \caption{\label{fig:victory}\protect Distributions of
108     tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
109     We show the oberved distributions in both Monte Carlo and data.
110     We also show the distributions predicted from
111 benhoob 1.4 ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.}
112 claudioc 1.3 \end{center}
113     \end{figure}
114    
115    
116 benhoob 1.14
117 benhoob 1.9 \begin{table}[hbt]
118     \begin{center}
119 benhoob 1.13 \caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region
120 benhoob 1.19 $125 < \mathrm{sumJetPt} < 300$~GeV$^{1/2}$. The predicted and observed yields for
121 benhoob 1.9 the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
122     and MC. The error on the prediction for data is statistical only, assuming
123     Gaussian errors.}
124 benhoob 1.13 \begin{tabular}{lccc}
125 benhoob 1.9 \hline
126     & Predicted & Observed & Obs/Pred \\
127     \hline
128 benhoob 1.14 total SM MC & 7.18 & 8.63 & 1.20 \\
129 benhoob 1.16 data & $6.06 \pm 5.95$ & 11 & 1.82 \\
130 benhoob 1.9 \hline
131     \end{tabular}
132     \end{center}
133     \end{table}
134    
135     \begin{table}[hbt]
136     \begin{center}
137 benhoob 1.13 \caption{\label{tab:victory_signal}Results of the dilepton $p_{T}$ template method in the signal region
138 benhoob 1.19 $\mathrm{sumJetPt} > 300$~GeV$^{1/2}$. The predicted and observed yields for
139 benhoob 1.9 the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
140     and MC. The error on the prediction for data is statistical only, assuming
141     Gaussian errors.}
142 benhoob 1.13 \begin{tabular}{lccc}
143 benhoob 1.9 \hline
144 benhoob 1.11 & Predicted & Observed & Obs/Pred \\
145 benhoob 1.9 \hline
146 benhoob 1.14 total SM MC & 1.03 & 1.43 & 1.38 \\
147     data & $2.53 \pm 2.25$ & 1 & 0.40 \\
148 benhoob 1.9 \hline
149     \end{tabular}
150     \end{center}
151     \end{table}
152    
153    
154 claudioc 1.3 \subsection{Summary of results}
155 claudioc 1.1 To summarize: we see no evidence for an anomalous
156     rate of opposite sign isolated dilepton events
157     at high \met and high SumJetPt. The extraction of
158     quantitative limits on new physics models is discussed
159 benhoob 1.5 in Section~\ref{sec:limit}.