ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
Revision: 1.2
Committed: Fri Nov 5 23:07:43 2010 UTC (14 years, 6 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
Changes since 1.1: +44 -18 lines
Log Message:
more better

File Contents

# User Rev Content
1 claudioc 1.1 \section{Results}
2     \label{sec:results}
3    
4 claudioc 1.2 \noindent {\color{red} In the 11 pb everything is very
5     simple because there are a few zeros. This text is written
6     for the full dataset under the assumption that some of these
7     numbers will not be zero anymore.}
8 claudioc 1.1
9     \begin{figure}[tbh]
10     \begin{center}
11     \includegraphics[width=0.75\linewidth]{abcdData.png}
12     \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
13     vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data. Here we also
14     show our choice of ABCD regions.}
15     \end{center}
16     \end{figure}
17    
18    
19 claudioc 1.2 The data, together with SM expectations is presented
20     in Figure~\ref{fig:abcdData}. We see $\color{red} 0$
21     events in the signal region (region $D$). The Standard Model
22     MC expectation is {\color{red} 0.4} events.
23    
24     \subsection{Background estimate from the ABCD method}
25     \label{sec:abcdres}
26    
27     The data yields in the
28     four regions are summarized in Table~\ref{tab:datayield}.
29     The prediction of the ABCD method is is given by $AC/B$ and
30     is 0.5 events.
31     (see Table~\ref{tab:datayield}.
32    
33 claudioc 1.1 \begin{table}[hbt]
34     \begin{center}
35     \caption{\label{tab:datayield} Data yields in the four
36     regions of Figure~\ref{fig:abcdData}. We also show the
37     SM Monte Carlo expectations.}
38     \begin{tabular}{|l|c|c|c|c||c|}
39     \hline
40 claudioc 1.2 &A & B & C & D & AC/B \\ \hline
41 claudioc 1.1 Data &3 & 6 & 1 & 0 & $0.5^{+x}_{-y}$ \\
42     SM MC &2.5 &11.2 & 1.5 & 0.4 & 0.4 \\
43     \hline
44     \end{tabular}
45     \end{center}
46     \end{table}
47    
48 claudioc 1.2 As a cross-check, we can subtract from the yields in
49     Table~\ref{tab:datayield} the expected DY contributions
50     from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
51     estimate of the $t\bar{t}$ contribution. The result
52     of this exercise is {\color{red} xx} events.
53    
54     \subsection{Background estimate from the $P_T(\ell\ell)$ method}
55     \label{sec:victoryres}
56    
57    
58    
59     The number of data events in region $D'$, which is defined in
60     Section~\ref{sec:othBG} to be the same as region $D$ but with the
61     $\met/\sqrt{\rm SumJetPt}$ requirement
62     replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
63     is $N_{D'}=0$. Thus the BG prediction is
64     $N_D = K^{MC} \cdot K_{\rm fudge} \cdot N_{D'} = xx$
65     where we used $K^{MC}=xx$ and $K_{\rm fudge}=xx \pm yy$.
66     Note that if we were to subtract off from region $D'$
67     the {\color{red} $xx$} DY events estimated from
68     Table~\ref{tab:ABCD-DYptll}, the background
69     prediction would change to $N_D=xx$.
70 claudioc 1.1
71 claudioc 1.2 As a cross-check, we use the $P_T(\ell \ell)$
72 claudioc 1.1 method to also predict the number of events in the
73     control region $120<{\rm SumJetPt}<300$ GeV and
74     \met/$\sqrt{\rm SumJetPt} > 8.5$. We predict
75     $5.6^{+x}_{-y}$ events and we observe 4.
76 claudioc 1.2 {\color{red} Note: when we do this more carefully
77     we will need to use a different $K$ and a different $K_{fudge}$>}
78 claudioc 1.1
79     To summarize: we see no evidence for an anomalous
80     rate of opposite sign isolated dilepton events
81     at high \met and high SumJetPt. The extraction of
82     quantitative limits on new physics models is discussed
83     in Section~\ref{sec:limits}.