ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
Revision: 1.24
Committed: Sat Nov 20 15:23:11 2010 UTC (14 years, 5 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
Changes since 1.23: +14 -11 lines
Log Message:
Add errors to ABCD table

File Contents

# User Rev Content
1 claudioc 1.22 %\clearpage
2 benhoob 1.7
3 claudioc 1.1 \section{Results}
4     \label{sec:results}
5    
6     \begin{figure}[tbh]
7     \begin{center}
8 benhoob 1.7 \includegraphics[width=0.75\linewidth]{abcd_35pb.png}
9 claudioc 1.1 \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
10     vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data. Here we also
11     show our choice of ABCD regions.}
12     \end{center}
13     \end{figure}
14    
15 claudioc 1.2 The data, together with SM expectations is presented
16 benhoob 1.7 in Figure~\ref{fig:abcdData}. We see 1 event in the
17 claudioc 1.17 signal region (region $D$). For more information about
18     this one candidate events, see Appendix~\ref{sec:cand}.
19     The Standard Model MC expectation is 1.4 events.
20 claudioc 1.2
21     \subsection{Background estimate from the ABCD method}
22     \label{sec:abcdres}
23    
24     The data yields in the
25     four regions are summarized in Table~\ref{tab:datayield}.
26 benhoob 1.23 The prediction of the ABCD method is is given by $k_{ABCD} \times (A\times C/B)$ and
27     is $1.8 \pm 1.0(stat) \pm 0.4(syst)$ events, where $k_{ABCD} = 1.2 \pm 0.2$ as discussed
28     in Sec.~\ref{sec:abcd}.
29 claudioc 1.2
30 claudioc 1.1 \begin{table}[hbt]
31     \begin{center}
32     \caption{\label{tab:datayield} Data yields in the four
33 benhoob 1.7 regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
34 benhoob 1.14 by A $\times$C / B. The quoted uncertainty
35 benhoob 1.4 on the prediction in data is statistical only, assuming Gaussian errors.
36 benhoob 1.7 We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
37     \begin{tabular}{l||c|c|c|c||c}
38     \hline
39 benhoob 1.14 sample & A & B & C & D & A $\times$ C / B \\
40 benhoob 1.24
41    
42 benhoob 1.7 \hline
43 benhoob 1.24 sample & A & B & C & D & PRED \\
44     \hline
45     $t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 7.96 $\pm$ 0.17 & 33.07 $\pm$ 0.35 & 4.81 $\pm$ 0.13 & 1.20 $\pm$ 0.07 & 1.16 $\pm$ 0.04 \\
46     $t\bar{t}\rightarrow \mathrm{other}$ & 0.15 $\pm$ 0.02 & 0.85 $\pm$ 0.06 & 0.09 $\pm$ 0.02 & 0.04 $\pm$ 0.01 & 0.02 $\pm$ 0.00 \\
47     $Z^0 \rightarrow \ell^{+}\ell^{-}$ & 0.03 $\pm$ 0.03 & 1.47 $\pm$ 0.38 & 0.10 $\pm$ 0.10 & 0.10 $\pm$ 0.10 & 0.00 $\pm$ 0.00 \\
48     $W^{\pm}$ + jets & 0.00 $\pm$ 0.00 & 0.10 $\pm$ 0.10 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
49     $W^+W^-$ & 0.19 $\pm$ 0.05 & 0.29 $\pm$ 0.06 & 0.02 $\pm$ 0.02 & 0.07 $\pm$ 0.03 & 0.02 $\pm$ 0.01 \\
50     $W^{\pm}Z^0$ & 0.03 $\pm$ 0.01 & 0.04 $\pm$ 0.02 & 0.01 $\pm$ 0.01 & 0.01 $\pm$ 0.01 & 0.00 $\pm$ 0.00 \\
51     $Z^0Z^0$ & 0.00 $\pm$ 0.00 & 0.03 $\pm$ 0.01 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
52     single top & 0.28 $\pm$ 0.01 & 1.00 $\pm$ 0.03 & 0.04 $\pm$ 0.01 & 0.01 $\pm$ 0.00 & 0.01 $\pm$ 0.00 \\
53 benhoob 1.7 \hline
54 benhoob 1.24 total SM MC & 8.63 $\pm$ 0.18 & 36.85 $\pm$ 0.53 & 5.07 $\pm$ 0.17 & 1.43 $\pm$ 0.12 & 1.19 $\pm$ 0.05 \\
55 claudioc 1.1 \hline
56 benhoob 1.24 data & 11 & 36 & 5 & 1 & 1.53 $\pm$ 0.86 \\
57 claudioc 1.1 \hline
58     \end{tabular}
59     \end{center}
60     \end{table}
61    
62 claudioc 1.3 %As a cross-check, we can subtract from the yields in
63     %Table~\ref{tab:datayield} the expected DY contributions
64     %from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
65     %estimate of the $t\bar{t}$ contribution. The result
66     %of this exercise is {\color{red} xx} events.
67 claudioc 1.2
68 claudioc 1.22 %\clearpage
69 benhoob 1.10
70 claudioc 1.2 \subsection{Background estimate from the $P_T(\ell\ell)$ method}
71     \label{sec:victoryres}
72    
73 benhoob 1.11 We first use the $P_T(\ell \ell)$ method to predict the number of events
74 benhoob 1.12 in control region A, defined in Sec.~\ref{sec:abcd} as
75 benhoob 1.19 $125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5~GeV$^{1/2}$.
76 benhoob 1.12 We count the number of events in region
77     $A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
78     cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
79 benhoob 1.15 and find $N_{A'}=6$. We subtract off the expected DY contribution in this region
80     $N_{DY} = 2.5 \pm 2.4$, derived in Sec.~\ref{sec:othBG}.
81     To predict the yield in region A we take
82     $N_A = K \cdot K_C \cdot ( N_{A'} - N_{DY} ) = 6.1 \pm 6.0$
83 benhoob 1.11 (statistical uncertainty only, assuming Gaussian errors),
84 benhoob 1.15 where we have taken $K = 1.73$ and $K_C = 1$. This yield is consistent
85     with the observed yield of 11 events, as shown in
86 benhoob 1.11 Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left).
87    
88     Encouraged by the good agreement between predicted and observed yields
89     in the control region, we proceed to perform the $P_T(\ell \ell)$ method
90     in the signal region ${\rm SumJetPt}>300$~GeV.
91 claudioc 1.2 The number of data events in region $D'$, which is defined in
92     Section~\ref{sec:othBG} to be the same as region $D$ but with the
93     $\met/\sqrt{\rm SumJetPt}$ requirement
94 benhoob 1.11 replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
95 benhoob 1.13 is $N_{D'}=2$.
96     We next subtract off the expected DY contribution of
97 benhoob 1.14 $N_{DY}$ = $0.4 \pm 0.4$ events, as calculated
98 benhoob 1.13 in Sec.~\ref{sec:othBG}. The BG prediction is
99 benhoob 1.14 $N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 2.5 \pm 2.2$ (statistical
100 benhoob 1.13 uncertainty only, assuming Gaussian errors), where $K=1.54 \pm xx$
101 benhoob 1.11 as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
102 benhoob 1.13 This prediction is consistent with the observed yield of
103 benhoob 1.12 1 event, as summarized in Table~\ref{tab:victory_signal} and Fig.~\ref{fig:victory}
104     (right).
105 benhoob 1.11
106 claudioc 1.1
107 claudioc 1.3 \begin{figure}[hbt]
108     \begin{center}
109 benhoob 1.8 \includegraphics[width=0.48\linewidth]{victory_control_35pb.png}
110     \includegraphics[width=0.48\linewidth]{victory_signal_35pb.png}
111 claudioc 1.3 \caption{\label{fig:victory}\protect Distributions of
112     tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
113     We show the oberved distributions in both Monte Carlo and data.
114     We also show the distributions predicted from
115 benhoob 1.4 ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.}
116 claudioc 1.3 \end{center}
117     \end{figure}
118    
119    
120 benhoob 1.14
121 benhoob 1.9 \begin{table}[hbt]
122     \begin{center}
123 benhoob 1.13 \caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region
124 benhoob 1.19 $125 < \mathrm{sumJetPt} < 300$~GeV$^{1/2}$. The predicted and observed yields for
125 benhoob 1.9 the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
126     and MC. The error on the prediction for data is statistical only, assuming
127     Gaussian errors.}
128 benhoob 1.13 \begin{tabular}{lccc}
129 benhoob 1.9 \hline
130     & Predicted & Observed & Obs/Pred \\
131     \hline
132 benhoob 1.14 total SM MC & 7.18 & 8.63 & 1.20 \\
133 benhoob 1.16 data & $6.06 \pm 5.95$ & 11 & 1.82 \\
134 benhoob 1.9 \hline
135     \end{tabular}
136     \end{center}
137     \end{table}
138    
139     \begin{table}[hbt]
140     \begin{center}
141 benhoob 1.13 \caption{\label{tab:victory_signal}Results of the dilepton $p_{T}$ template method in the signal region
142 benhoob 1.19 $\mathrm{sumJetPt} > 300$~GeV$^{1/2}$. The predicted and observed yields for
143 benhoob 1.9 the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
144     and MC. The error on the prediction for data is statistical only, assuming
145     Gaussian errors.}
146 benhoob 1.13 \begin{tabular}{lccc}
147 benhoob 1.9 \hline
148 benhoob 1.11 & Predicted & Observed & Obs/Pred \\
149 benhoob 1.9 \hline
150 benhoob 1.14 total SM MC & 1.03 & 1.43 & 1.38 \\
151     data & $2.53 \pm 2.25$ & 1 & 0.40 \\
152 benhoob 1.9 \hline
153     \end{tabular}
154     \end{center}
155     \end{table}
156    
157    
158 claudioc 1.22 % \clearpage
159 claudioc 1.3 \subsection{Summary of results}
160 benhoob 1.21
161     In summary, in the signal region defined as $\mathrm{SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt} > 8.5$~GeV$^{1/2}$:\\
162     We observe 1 event. \\
163     We expect 1.4 events from Standard Model MC prediction. \\
164 benhoob 1.23 The ABCD data driven method predicts $1.8 \pm 1.0(stat) \pm 0.4(syst)$ events. \\
165 benhoob 1.21 The $P_T(\ell\ell)$ method predicts $2.5 \pm 2.2$ events.
166    
167     All three background estimates are consistent within their uncertainties.
168     We thus take as our best estimate of the Standard Model yield in
169     the signal region the MC prediction and assign as an uncertainty the
170     maximal deviation with either of the data-driven methods, $N_{BG}=1.4 \pm 1.1$.
171    
172     We conclude that we see no evidence for an anomalous
173 claudioc 1.1 rate of opposite sign isolated dilepton events
174     at high \met and high SumJetPt. The extraction of
175     quantitative limits on new physics models is discussed
176 benhoob 1.5 in Section~\ref{sec:limit}.