ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
Revision: 1.28
Committed: Thu Dec 2 15:02:29 2010 UTC (14 years, 5 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
Changes since 1.27: +6 -3 lines
Log Message:
Updates

File Contents

# User Rev Content
1 claudioc 1.22 %\clearpage
2 benhoob 1.7
3 claudioc 1.1 \section{Results}
4     \label{sec:results}
5    
6     \begin{figure}[tbh]
7     \begin{center}
8 benhoob 1.7 \includegraphics[width=0.75\linewidth]{abcd_35pb.png}
9 claudioc 1.1 \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
10     vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data. Here we also
11     show our choice of ABCD regions.}
12     \end{center}
13     \end{figure}
14    
15 claudioc 1.2 The data, together with SM expectations is presented
16 benhoob 1.7 in Figure~\ref{fig:abcdData}. We see 1 event in the
17 claudioc 1.17 signal region (region $D$). For more information about
18     this one candidate events, see Appendix~\ref{sec:cand}.
19     The Standard Model MC expectation is 1.4 events.
20 claudioc 1.2
21     \subsection{Background estimate from the ABCD method}
22     \label{sec:abcdres}
23    
24     The data yields in the
25     four regions are summarized in Table~\ref{tab:datayield}.
26 benhoob 1.27 The prediction of the ABCD method is is given by $A \times C / B = 1.5 \pm 0.9({\rm stat}) \pm 0.3({\rm syst})$.
27 claudioc 1.2
28 claudioc 1.1 \begin{table}[hbt]
29     \begin{center}
30     \caption{\label{tab:datayield} Data yields in the four
31 benhoob 1.7 regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
32 benhoob 1.14 by A $\times$C / B. The quoted uncertainty
33 benhoob 1.4 on the prediction in data is statistical only, assuming Gaussian errors.
34 benhoob 1.7 We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
35     \begin{tabular}{l||c|c|c|c||c}
36     \hline
37 benhoob 1.26 sample & A & B & C & D & A $\times$ C / B \\
38 benhoob 1.24 \hline
39 benhoob 1.26 $t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 8.27 $\pm$ 0.18 & 32.16 $\pm$ 0.35 & 4.69 $\pm$ 0.13 & 1.05 $\pm$ 0.06 & 1.21 $\pm$ 0.04 \\
40     $t\bar{t}\rightarrow \mathrm{other}$ & 0.12 $\pm$ 0.02 & 0.77 $\pm$ 0.05 & 0.15 $\pm$ 0.02 & 0.02 $\pm$ 0.01 & 0.02 $\pm$ 0.01 \\
41     $Z^0 \rightarrow \ell^{+}\ell^{-}$ & 0.22 $\pm$ 0.11 & 1.54 $\pm$ 0.29 & 0.05 $\pm$ 0.05 & 0.16 $\pm$ 0.09 & 0.01 $\pm$ 0.01 \\
42 benhoob 1.24 $W^{\pm}$ + jets & 0.00 $\pm$ 0.00 & 0.10 $\pm$ 0.10 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
43 benhoob 1.26 $W^+W^-$ & 0.11 $\pm$ 0.01 & 0.30 $\pm$ 0.02 & 0.02 $\pm$ 0.01 & 0.03 $\pm$ 0.01 & 0.01 $\pm$ 0.00 \\
44     $W^{\pm}Z^0$ & 0.01 $\pm$ 0.00 & 0.04 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
45     $Z^0Z^0$ & 0.01 $\pm$ 0.00 & 0.02 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
46     single top & 0.30 $\pm$ 0.01 & 1.06 $\pm$ 0.03 & 0.04 $\pm$ 0.01 & 0.01 $\pm$ 0.00 & 0.01 $\pm$ 0.00 \\
47 benhoob 1.7 \hline
48 benhoob 1.26 total SM MC & 9.03 $\pm$ 0.21 & 35.97 $\pm$ 0.46 & 4.97 $\pm$ 0.15 & 1.29 $\pm$ 0.11 & 1.25 $\pm$ 0.05 \\
49 claudioc 1.1 \hline
50 benhoob 1.26 data & 11 & 36 & 5 & 1 & 1.53 $\pm$ 0.86 \\
51 claudioc 1.1 \hline
52     \end{tabular}
53     \end{center}
54     \end{table}
55    
56 claudioc 1.3 %As a cross-check, we can subtract from the yields in
57     %Table~\ref{tab:datayield} the expected DY contributions
58     %from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
59     %estimate of the $t\bar{t}$ contribution. The result
60     %of this exercise is {\color{red} xx} events.
61 claudioc 1.2
62 claudioc 1.22 %\clearpage
63 benhoob 1.10
64 claudioc 1.2 \subsection{Background estimate from the $P_T(\ell\ell)$ method}
65     \label{sec:victoryres}
66    
67 benhoob 1.11 We first use the $P_T(\ell \ell)$ method to predict the number of events
68 benhoob 1.12 in control region A, defined in Sec.~\ref{sec:abcd} as
69 benhoob 1.19 $125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5~GeV$^{1/2}$.
70 benhoob 1.12 We count the number of events in region
71     $A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
72     cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
73 benhoob 1.15 and find $N_{A'}=6$. We subtract off the expected DY contribution in this region
74 benhoob 1.27 $N_{DY} = 1.6 \pm 1.13$, derived in Sec.~\ref{sec:othBG}.
75 benhoob 1.15 To predict the yield in region A we take
76 benhoob 1.27 $N_A = K \cdot K_C \cdot ( N_{A'} - N_{DY} ) = 10.7 \pm 6.6$
77     where we have taken $K = 1.73$ and $K_C = 1.4$.
78     This uncertainty takes into account the statistical uncertainties in $N_{A'}$ and $N_{DY}$,
79     assuming Gaussian errors.
80     This yield is consistent
81 benhoob 1.15 with the observed yield of 11 events, as shown in
82 benhoob 1.11 Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left).
83    
84     Encouraged by the good agreement between predicted and observed yields
85     in the control region, we proceed to perform the $P_T(\ell \ell)$ method
86     in the signal region ${\rm SumJetPt}>300$~GeV.
87 claudioc 1.2 The number of data events in region $D'$, which is defined in
88     Section~\ref{sec:othBG} to be the same as region $D$ but with the
89     $\met/\sqrt{\rm SumJetPt}$ requirement
90 benhoob 1.11 replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
91 benhoob 1.13 is $N_{D'}=2$.
92 benhoob 1.27 %We next subtract off the expected DY contribution of
93     %$N_{DY}$ = $0.4 \pm 0.4$ events, as calculated
94     %in Sec.~\ref{sec:othBG}.
95     The BG prediction is
96     $N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 4.3 \pm 3.0({\rm stat}) \pm 1.2({\rm syst})$
97     where $K=1.52 \pm xx$
98     as derived in Sec.~\ref{sec:victory} and $K_C = 1.4 \pm 0.4$.
99 benhoob 1.13 This prediction is consistent with the observed yield of
100 benhoob 1.12 1 event, as summarized in Table~\ref{tab:victory_signal} and Fig.~\ref{fig:victory}
101     (right).
102 benhoob 1.11
103 claudioc 1.1
104 claudioc 1.3 \begin{figure}[hbt]
105     \begin{center}
106 benhoob 1.8 \includegraphics[width=0.48\linewidth]{victory_control_35pb.png}
107     \includegraphics[width=0.48\linewidth]{victory_signal_35pb.png}
108 claudioc 1.3 \caption{\label{fig:victory}\protect Distributions of
109     tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
110     We show the oberved distributions in both Monte Carlo and data.
111     We also show the distributions predicted from
112 benhoob 1.4 ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.}
113 claudioc 1.3 \end{center}
114     \end{figure}
115    
116    
117 benhoob 1.9 \begin{table}[hbt]
118     \begin{center}
119 benhoob 1.27 \caption{\label{tab:victory}Results of the dilepton $p_{T}$ template method in the control region
120     ($125 < \mathrm{SumJetPt} < 300$~GeV) and signal region ($\mathrm{SumJetPt} > 300$~GeV). The predicted and
121     observed yields for the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}} > 8.5$~GeV$^{1/2}$. The errors are
122     statistical only, assuming Gaussian errors.}
123     \begin{tabular}{l|ccc|ccc}
124     \hline
125     & Control Region & & Signal Region & \\
126 benhoob 1.9 \hline
127 benhoob 1.27 & Predicted & Observed & Predicted & Observed \\
128 benhoob 1.9 \hline
129 benhoob 1.27 total SM MC & 6.36 & 9.03 & 0.92 & 1.29 \\
130     data & $10.7 \pm 6.6$ & 11 & $4.3 \pm 3.0$ & 1 \\
131 benhoob 1.9 \hline
132     \end{tabular}
133     \end{center}
134     \end{table}
135    
136    
137    
138 claudioc 1.22 % \clearpage
139 claudioc 1.3 \subsection{Summary of results}
140 benhoob 1.21
141 benhoob 1.28 In summary, in the signal region defined as $\mathrm{SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt} > 8.5$~GeV$^{1/2}$:\\
142 benhoob 1.21 We observe 1 event. \\
143 benhoob 1.28 We expect 1.3 events from Standard Model MC prediction. \\
144 benhoob 1.27 The ABCD data driven method predicts $1.5 \pm 0.9({\rm stat}) \pm 0.3({\rm syst})$ events. \\
145     The $P_T(\ell\ell)$ method predicts $4.3 \pm 3.0({\rm stat}) \pm 1.2({\rm syst})$ events.
146 benhoob 1.21
147     All three background estimates are consistent within their uncertainties.
148     We thus take as our best estimate of the Standard Model yield in
149     the signal region the MC prediction and assign as an uncertainty the
150     maximal deviation with either of the data-driven methods, $N_{BG}=1.4 \pm 1.1$.
151 benhoob 1.28 {\bf \color{red} WHAT DO WE WANT TO DO FOR $N_{BG}$??? INCLUDING VICTORY RESULTS GIVES A VERY BIG ERROR IF WE TAKE
152     THE SPREAD BETWEEN MC AND VICTORY AS A SYSTEMATIC....
153     If we instead take an average of the 2 data-driven methods, weighted by the errors, we get $N_{BG}=1.7 \pm 1.3$,
154     which seems reasonable. }
155 benhoob 1.21
156     We conclude that we see no evidence for an anomalous
157 claudioc 1.1 rate of opposite sign isolated dilepton events
158     at high \met and high SumJetPt. The extraction of
159     quantitative limits on new physics models is discussed
160 benhoob 1.5 in Section~\ref{sec:limit}.