ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
Revision: 1.29
Committed: Thu Dec 2 16:42:37 2010 UTC (14 years, 5 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
Changes since 1.28: +10 -12 lines
Log Message:
Update with 38X MC results

File Contents

# User Rev Content
1 claudioc 1.22 %\clearpage
2 benhoob 1.7
3 claudioc 1.1 \section{Results}
4     \label{sec:results}
5    
6     \begin{figure}[tbh]
7     \begin{center}
8 benhoob 1.29 \includegraphics[width=0.75\linewidth]{abcd_38XMC.png}
9 claudioc 1.1 \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
10 benhoob 1.29 vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data.}
11 claudioc 1.1 \end{center}
12     \end{figure}
13    
14 claudioc 1.2 The data, together with SM expectations is presented
15 benhoob 1.7 in Figure~\ref{fig:abcdData}. We see 1 event in the
16 claudioc 1.17 signal region (region $D$). For more information about
17     this one candidate events, see Appendix~\ref{sec:cand}.
18 benhoob 1.29 The Standard Model MC expectation is 1.3 events.
19 claudioc 1.2
20     \subsection{Background estimate from the ABCD method}
21     \label{sec:abcdres}
22    
23     The data yields in the
24     four regions are summarized in Table~\ref{tab:datayield}.
25 benhoob 1.27 The prediction of the ABCD method is is given by $A \times C / B = 1.5 \pm 0.9({\rm stat}) \pm 0.3({\rm syst})$.
26 claudioc 1.2
27 claudioc 1.1 \begin{table}[hbt]
28     \begin{center}
29     \caption{\label{tab:datayield} Data yields in the four
30 benhoob 1.7 regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
31 benhoob 1.29 by A $\times$ C / B. The quoted uncertainty
32 benhoob 1.4 on the prediction in data is statistical only, assuming Gaussian errors.
33 benhoob 1.7 We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
34     \begin{tabular}{l||c|c|c|c||c}
35     \hline
36 benhoob 1.26 sample & A & B & C & D & A $\times$ C / B \\
37 benhoob 1.24 \hline
38 benhoob 1.26 $t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 8.27 $\pm$ 0.18 & 32.16 $\pm$ 0.35 & 4.69 $\pm$ 0.13 & 1.05 $\pm$ 0.06 & 1.21 $\pm$ 0.04 \\
39     $t\bar{t}\rightarrow \mathrm{other}$ & 0.12 $\pm$ 0.02 & 0.77 $\pm$ 0.05 & 0.15 $\pm$ 0.02 & 0.02 $\pm$ 0.01 & 0.02 $\pm$ 0.01 \\
40     $Z^0 \rightarrow \ell^{+}\ell^{-}$ & 0.22 $\pm$ 0.11 & 1.54 $\pm$ 0.29 & 0.05 $\pm$ 0.05 & 0.16 $\pm$ 0.09 & 0.01 $\pm$ 0.01 \\
41 benhoob 1.24 $W^{\pm}$ + jets & 0.00 $\pm$ 0.00 & 0.10 $\pm$ 0.10 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
42 benhoob 1.26 $W^+W^-$ & 0.11 $\pm$ 0.01 & 0.30 $\pm$ 0.02 & 0.02 $\pm$ 0.01 & 0.03 $\pm$ 0.01 & 0.01 $\pm$ 0.00 \\
43     $W^{\pm}Z^0$ & 0.01 $\pm$ 0.00 & 0.04 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
44     $Z^0Z^0$ & 0.01 $\pm$ 0.00 & 0.02 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
45     single top & 0.30 $\pm$ 0.01 & 1.06 $\pm$ 0.03 & 0.04 $\pm$ 0.01 & 0.01 $\pm$ 0.00 & 0.01 $\pm$ 0.00 \\
46 benhoob 1.7 \hline
47 benhoob 1.26 total SM MC & 9.03 $\pm$ 0.21 & 35.97 $\pm$ 0.46 & 4.97 $\pm$ 0.15 & 1.29 $\pm$ 0.11 & 1.25 $\pm$ 0.05 \\
48 claudioc 1.1 \hline
49 benhoob 1.26 data & 11 & 36 & 5 & 1 & 1.53 $\pm$ 0.86 \\
50 claudioc 1.1 \hline
51     \end{tabular}
52     \end{center}
53     \end{table}
54    
55 claudioc 1.3 %As a cross-check, we can subtract from the yields in
56     %Table~\ref{tab:datayield} the expected DY contributions
57     %from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
58     %estimate of the $t\bar{t}$ contribution. The result
59     %of this exercise is {\color{red} xx} events.
60 claudioc 1.2
61 claudioc 1.22 %\clearpage
62 benhoob 1.10
63 claudioc 1.2 \subsection{Background estimate from the $P_T(\ell\ell)$ method}
64     \label{sec:victoryres}
65    
66 benhoob 1.11 We first use the $P_T(\ell \ell)$ method to predict the number of events
67 benhoob 1.12 in control region A, defined in Sec.~\ref{sec:abcd} as
68 benhoob 1.19 $125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5~GeV$^{1/2}$.
69 benhoob 1.12 We count the number of events in region
70     $A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
71     cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
72 benhoob 1.15 and find $N_{A'}=6$. We subtract off the expected DY contribution in this region
73 benhoob 1.29 $N_{DY} = 1.65 \pm 1.13$, derived in Sec.~\ref{sec:othBG}.
74 benhoob 1.15 To predict the yield in region A we take
75 benhoob 1.27 $N_A = K \cdot K_C \cdot ( N_{A'} - N_{DY} ) = 10.7 \pm 6.6$
76     where we have taken $K = 1.73$ and $K_C = 1.4$.
77     This uncertainty takes into account the statistical uncertainties in $N_{A'}$ and $N_{DY}$,
78     assuming Gaussian errors.
79     This yield is consistent
80 benhoob 1.15 with the observed yield of 11 events, as shown in
81 benhoob 1.29 Table~\ref{tab:victory} and displayed in Fig.~\ref{fig:victory} (left).
82 benhoob 1.11
83     Encouraged by the good agreement between predicted and observed yields
84     in the control region, we proceed to perform the $P_T(\ell \ell)$ method
85     in the signal region ${\rm SumJetPt}>300$~GeV.
86 claudioc 1.2 The number of data events in region $D'$, which is defined in
87     Section~\ref{sec:othBG} to be the same as region $D$ but with the
88     $\met/\sqrt{\rm SumJetPt}$ requirement
89 benhoob 1.11 replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
90 benhoob 1.13 is $N_{D'}=2$.
91 benhoob 1.27 %We next subtract off the expected DY contribution of
92     %$N_{DY}$ = $0.4 \pm 0.4$ events, as calculated
93     %in Sec.~\ref{sec:othBG}.
94     The BG prediction is
95     $N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 4.3 \pm 3.0({\rm stat}) \pm 1.2({\rm syst})$
96 benhoob 1.29 where $K=1.52$ as derived in Sec.~\ref{sec:victory} and $K_C = 1.4 \pm 0.4$.
97 benhoob 1.13 This prediction is consistent with the observed yield of
98 benhoob 1.29 1 event, as summarized in Table~\ref{tab:victory} and Fig.~\ref{fig:victory}
99 benhoob 1.12 (right).
100 benhoob 1.11
101 claudioc 1.1
102 claudioc 1.3 \begin{figure}[hbt]
103     \begin{center}
104 benhoob 1.8 \includegraphics[width=0.48\linewidth]{victory_control_35pb.png}
105     \includegraphics[width=0.48\linewidth]{victory_signal_35pb.png}
106 claudioc 1.3 \caption{\label{fig:victory}\protect Distributions of
107     tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
108     We show the oberved distributions in both Monte Carlo and data.
109     We also show the distributions predicted from
110 benhoob 1.4 ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.}
111 claudioc 1.3 \end{center}
112     \end{figure}
113    
114    
115 benhoob 1.9 \begin{table}[hbt]
116     \begin{center}
117 benhoob 1.27 \caption{\label{tab:victory}Results of the dilepton $p_{T}$ template method in the control region
118     ($125 < \mathrm{SumJetPt} < 300$~GeV) and signal region ($\mathrm{SumJetPt} > 300$~GeV). The predicted and
119     observed yields for the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}} > 8.5$~GeV$^{1/2}$. The errors are
120     statistical only, assuming Gaussian errors.}
121 benhoob 1.29 \begin{tabular}{l|cc|cc}
122 benhoob 1.27 \hline
123     & Control Region & & Signal Region & \\
124 benhoob 1.9 \hline
125 benhoob 1.27 & Predicted & Observed & Predicted & Observed \\
126 benhoob 1.9 \hline
127 benhoob 1.27 total SM MC & 6.36 & 9.03 & 0.92 & 1.29 \\
128     data & $10.7 \pm 6.6$ & 11 & $4.3 \pm 3.0$ & 1 \\
129 benhoob 1.9 \hline
130     \end{tabular}
131     \end{center}
132     \end{table}
133    
134    
135    
136 claudioc 1.22 % \clearpage
137 claudioc 1.3 \subsection{Summary of results}
138 benhoob 1.21
139 benhoob 1.28 In summary, in the signal region defined as $\mathrm{SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt} > 8.5$~GeV$^{1/2}$:\\
140 benhoob 1.21 We observe 1 event. \\
141 benhoob 1.28 We expect 1.3 events from Standard Model MC prediction. \\
142 benhoob 1.27 The ABCD data driven method predicts $1.5 \pm 0.9({\rm stat}) \pm 0.3({\rm syst})$ events. \\
143     The $P_T(\ell\ell)$ method predicts $4.3 \pm 3.0({\rm stat}) \pm 1.2({\rm syst})$ events.
144 benhoob 1.21
145     All three background estimates are consistent within their uncertainties.
146     We thus take as our best estimate of the Standard Model yield in
147     the signal region the MC prediction and assign as an uncertainty the
148     maximal deviation with either of the data-driven methods, $N_{BG}=1.4 \pm 1.1$.
149 benhoob 1.28 {\bf \color{red} WHAT DO WE WANT TO DO FOR $N_{BG}$??? INCLUDING VICTORY RESULTS GIVES A VERY BIG ERROR IF WE TAKE
150     THE SPREAD BETWEEN MC AND VICTORY AS A SYSTEMATIC....
151 benhoob 1.29 If we instead take an average of the 2 data-driven methods, weighted by the errors, we get $N_{BG}=1.7 \pm 1.2$,
152 benhoob 1.28 which seems reasonable. }
153 benhoob 1.21
154     We conclude that we see no evidence for an anomalous
155 claudioc 1.1 rate of opposite sign isolated dilepton events
156     at high \met and high SumJetPt. The extraction of
157     quantitative limits on new physics models is discussed
158 benhoob 1.5 in Section~\ref{sec:limit}.