ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
Revision: 1.3
Committed: Sat Nov 6 19:51:16 2010 UTC (14 years, 6 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
CVS Tags: nov8th
Branch point for: NovSync
Changes since 1.2: +38 -17 lines
Log Message:
more more better

File Contents

# User Rev Content
1 claudioc 1.1 \section{Results}
2     \label{sec:results}
3    
4 claudioc 1.3 %\noindent {\color{red} In the 11 pb everything is very
5     %simple because there are a few zeros. This text is written
6     %for the full dataset under the assumption that some of these
7     %numbers will not be zero anymore.}
8 claudioc 1.1
9     \begin{figure}[tbh]
10     \begin{center}
11     \includegraphics[width=0.75\linewidth]{abcdData.png}
12     \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
13     vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data. Here we also
14     show our choice of ABCD regions.}
15     \end{center}
16     \end{figure}
17    
18    
19 claudioc 1.2 The data, together with SM expectations is presented
20     in Figure~\ref{fig:abcdData}. We see $\color{red} 0$
21     events in the signal region (region $D$). The Standard Model
22     MC expectation is {\color{red} 0.4} events.
23    
24     \subsection{Background estimate from the ABCD method}
25     \label{sec:abcdres}
26    
27     The data yields in the
28     four regions are summarized in Table~\ref{tab:datayield}.
29     The prediction of the ABCD method is is given by $AC/B$ and
30     is 0.5 events.
31     (see Table~\ref{tab:datayield}.
32    
33 claudioc 1.1 \begin{table}[hbt]
34     \begin{center}
35     \caption{\label{tab:datayield} Data yields in the four
36     regions of Figure~\ref{fig:abcdData}. We also show the
37     SM Monte Carlo expectations.}
38     \begin{tabular}{|l|c|c|c|c||c|}
39     \hline
40 claudioc 1.2 &A & B & C & D & AC/B \\ \hline
41 claudioc 1.1 Data &3 & 6 & 1 & 0 & $0.5^{+x}_{-y}$ \\
42     SM MC &2.5 &11.2 & 1.5 & 0.4 & 0.4 \\
43     \hline
44     \end{tabular}
45     \end{center}
46     \end{table}
47    
48 claudioc 1.3 %As a cross-check, we can subtract from the yields in
49     %Table~\ref{tab:datayield} the expected DY contributions
50     %from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
51     %estimate of the $t\bar{t}$ contribution. The result
52     %of this exercise is {\color{red} xx} events.
53 claudioc 1.2
54     \subsection{Background estimate from the $P_T(\ell\ell)$ method}
55     \label{sec:victoryres}
56    
57    
58 claudioc 1.3 {\color{red}As mentioned previously, for the 11/pb analysis
59     we use the $K$ factor from data and take $K_{\rm fudge}=1$.
60     This will change for the full dataset. We will also pay
61     more attention to the statistical errors.}
62 claudioc 1.2
63     The number of data events in region $D'$, which is defined in
64     Section~\ref{sec:othBG} to be the same as region $D$ but with the
65     $\met/\sqrt{\rm SumJetPt}$ requirement
66     replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
67 claudioc 1.3 is $N_{D'}=1$. Thus the BG prediction is
68     $N_D = K \cdot K_{\rm fudge} \cdot N_{D'} = 1.5$
69     where we used $K=1.5 \pm xx$ and $K_{\rm fudge}=1.0 \pm 0.0$.
70 claudioc 1.2 Note that if we were to subtract off from region $D'$
71 claudioc 1.3 the {\color{red} 0.4 $\pm$ 0.4} DY events estimated from
72     Section~\ref{sec:othBG}, the background
73     prediction would change to $N_D=0.9 \pm xx$ events.
74     {\color{red} When we do this with a real
75     $K_{\rm fudge}$, the fudge factor will be different
76     after the DY subtraction.}
77 claudioc 1.1
78 claudioc 1.2 As a cross-check, we use the $P_T(\ell \ell)$
79 claudioc 1.1 method to also predict the number of events in the
80     control region $120<{\rm SumJetPt}<300$ GeV and
81     \met/$\sqrt{\rm SumJetPt} > 8.5$. We predict
82     $5.6^{+x}_{-y}$ events and we observe 4.
83 claudioc 1.3 The results of the $P_T(\ell\ell)$ method are
84     summarized in Figure~\ref{fig:victory}.
85 claudioc 1.1
86 claudioc 1.3 \begin{figure}[hbt]
87     \begin{center}
88     \includegraphics[width=0.48\linewidth]{victory_control.png}
89     \includegraphics[width=0.48\linewidth]{victory_sig.png}
90     \caption{\label{fig:victory}\protect Distributions of
91     tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
92     We show the oberved distributions in both Monte Carlo and data.
93     We also show the distributions predicted from
94     tcMet/$\sqrt{P_T(\ell\ell)}$ in both MC and data.}
95     \end{center}
96     \end{figure}
97    
98    
99     \subsection{Summary of results}
100 claudioc 1.1 To summarize: we see no evidence for an anomalous
101     rate of opposite sign isolated dilepton events
102     at high \met and high SumJetPt. The extraction of
103     quantitative limits on new physics models is discussed
104     in Section~\ref{sec:limits}.