1 |
claudioc |
1.22 |
%\clearpage
|
2 |
benhoob |
1.7 |
|
3 |
claudioc |
1.1 |
\section{Results}
|
4 |
|
|
\label{sec:results}
|
5 |
|
|
|
6 |
|
|
\begin{figure}[tbh]
|
7 |
|
|
\begin{center}
|
8 |
benhoob |
1.29 |
\includegraphics[width=0.75\linewidth]{abcd_38XMC.png}
|
9 |
claudioc |
1.1 |
\caption{\label{fig:abcdData}\protect Distributions of SumJetPt
|
10 |
benhoob |
1.29 |
vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data.}
|
11 |
claudioc |
1.1 |
\end{center}
|
12 |
|
|
\end{figure}
|
13 |
|
|
|
14 |
claudioc |
1.2 |
The data, together with SM expectations is presented
|
15 |
benhoob |
1.7 |
in Figure~\ref{fig:abcdData}. We see 1 event in the
|
16 |
claudioc |
1.17 |
signal region (region $D$). For more information about
|
17 |
|
|
this one candidate events, see Appendix~\ref{sec:cand}.
|
18 |
benhoob |
1.29 |
The Standard Model MC expectation is 1.3 events.
|
19 |
claudioc |
1.2 |
|
20 |
|
|
\subsection{Background estimate from the ABCD method}
|
21 |
|
|
\label{sec:abcdres}
|
22 |
|
|
|
23 |
|
|
The data yields in the
|
24 |
|
|
four regions are summarized in Table~\ref{tab:datayield}.
|
25 |
benhoob |
1.27 |
The prediction of the ABCD method is is given by $A \times C / B = 1.5 \pm 0.9({\rm stat}) \pm 0.3({\rm syst})$.
|
26 |
claudioc |
1.2 |
|
27 |
claudioc |
1.1 |
\begin{table}[hbt]
|
28 |
|
|
\begin{center}
|
29 |
|
|
\caption{\label{tab:datayield} Data yields in the four
|
30 |
benhoob |
1.7 |
regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
|
31 |
benhoob |
1.29 |
by A $\times$ C / B. The quoted uncertainty
|
32 |
benhoob |
1.4 |
on the prediction in data is statistical only, assuming Gaussian errors.
|
33 |
benhoob |
1.7 |
We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
|
34 |
|
|
\begin{tabular}{l||c|c|c|c||c}
|
35 |
|
|
\hline
|
36 |
benhoob |
1.26 |
sample & A & B & C & D & A $\times$ C / B \\
|
37 |
benhoob |
1.24 |
\hline
|
38 |
benhoob |
1.26 |
$t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 8.27 $\pm$ 0.18 & 32.16 $\pm$ 0.35 & 4.69 $\pm$ 0.13 & 1.05 $\pm$ 0.06 & 1.21 $\pm$ 0.04 \\
|
39 |
|
|
$t\bar{t}\rightarrow \mathrm{other}$ & 0.12 $\pm$ 0.02 & 0.77 $\pm$ 0.05 & 0.15 $\pm$ 0.02 & 0.02 $\pm$ 0.01 & 0.02 $\pm$ 0.01 \\
|
40 |
|
|
$Z^0 \rightarrow \ell^{+}\ell^{-}$ & 0.22 $\pm$ 0.11 & 1.54 $\pm$ 0.29 & 0.05 $\pm$ 0.05 & 0.16 $\pm$ 0.09 & 0.01 $\pm$ 0.01 \\
|
41 |
benhoob |
1.24 |
$W^{\pm}$ + jets & 0.00 $\pm$ 0.00 & 0.10 $\pm$ 0.10 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
|
42 |
benhoob |
1.26 |
$W^+W^-$ & 0.11 $\pm$ 0.01 & 0.30 $\pm$ 0.02 & 0.02 $\pm$ 0.01 & 0.03 $\pm$ 0.01 & 0.01 $\pm$ 0.00 \\
|
43 |
|
|
$W^{\pm}Z^0$ & 0.01 $\pm$ 0.00 & 0.04 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
|
44 |
|
|
$Z^0Z^0$ & 0.01 $\pm$ 0.00 & 0.02 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
|
45 |
|
|
single top & 0.30 $\pm$ 0.01 & 1.06 $\pm$ 0.03 & 0.04 $\pm$ 0.01 & 0.01 $\pm$ 0.00 & 0.01 $\pm$ 0.00 \\
|
46 |
benhoob |
1.7 |
\hline
|
47 |
benhoob |
1.26 |
total SM MC & 9.03 $\pm$ 0.21 & 35.97 $\pm$ 0.46 & 4.97 $\pm$ 0.15 & 1.29 $\pm$ 0.11 & 1.25 $\pm$ 0.05 \\
|
48 |
claudioc |
1.1 |
\hline
|
49 |
benhoob |
1.26 |
data & 11 & 36 & 5 & 1 & 1.53 $\pm$ 0.86 \\
|
50 |
claudioc |
1.1 |
\hline
|
51 |
|
|
\end{tabular}
|
52 |
|
|
\end{center}
|
53 |
|
|
\end{table}
|
54 |
|
|
|
55 |
claudioc |
1.3 |
%As a cross-check, we can subtract from the yields in
|
56 |
|
|
%Table~\ref{tab:datayield} the expected DY contributions
|
57 |
|
|
%from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
|
58 |
|
|
%estimate of the $t\bar{t}$ contribution. The result
|
59 |
|
|
%of this exercise is {\color{red} xx} events.
|
60 |
claudioc |
1.2 |
|
61 |
claudioc |
1.22 |
%\clearpage
|
62 |
benhoob |
1.10 |
|
63 |
claudioc |
1.2 |
\subsection{Background estimate from the $P_T(\ell\ell)$ method}
|
64 |
|
|
\label{sec:victoryres}
|
65 |
|
|
|
66 |
benhoob |
1.11 |
We first use the $P_T(\ell \ell)$ method to predict the number of events
|
67 |
benhoob |
1.12 |
in control region A, defined in Sec.~\ref{sec:abcd} as
|
68 |
benhoob |
1.19 |
$125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5~GeV$^{1/2}$.
|
69 |
benhoob |
1.12 |
We count the number of events in region
|
70 |
|
|
$A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
|
71 |
|
|
cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
|
72 |
benhoob |
1.15 |
and find $N_{A'}=6$. We subtract off the expected DY contribution in this region
|
73 |
benhoob |
1.29 |
$N_{DY} = 1.65 \pm 1.13$, derived in Sec.~\ref{sec:othBG}.
|
74 |
benhoob |
1.15 |
To predict the yield in region A we take
|
75 |
benhoob |
1.27 |
$N_A = K \cdot K_C \cdot ( N_{A'} - N_{DY} ) = 10.7 \pm 6.6$
|
76 |
|
|
where we have taken $K = 1.73$ and $K_C = 1.4$.
|
77 |
|
|
This uncertainty takes into account the statistical uncertainties in $N_{A'}$ and $N_{DY}$,
|
78 |
|
|
assuming Gaussian errors.
|
79 |
|
|
This yield is consistent
|
80 |
benhoob |
1.15 |
with the observed yield of 11 events, as shown in
|
81 |
benhoob |
1.29 |
Table~\ref{tab:victory} and displayed in Fig.~\ref{fig:victory} (left).
|
82 |
benhoob |
1.11 |
|
83 |
|
|
Encouraged by the good agreement between predicted and observed yields
|
84 |
|
|
in the control region, we proceed to perform the $P_T(\ell \ell)$ method
|
85 |
|
|
in the signal region ${\rm SumJetPt}>300$~GeV.
|
86 |
claudioc |
1.2 |
The number of data events in region $D'$, which is defined in
|
87 |
|
|
Section~\ref{sec:othBG} to be the same as region $D$ but with the
|
88 |
|
|
$\met/\sqrt{\rm SumJetPt}$ requirement
|
89 |
benhoob |
1.11 |
replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
|
90 |
benhoob |
1.13 |
is $N_{D'}=2$.
|
91 |
benhoob |
1.27 |
%We next subtract off the expected DY contribution of
|
92 |
|
|
%$N_{DY}$ = $0.4 \pm 0.4$ events, as calculated
|
93 |
|
|
%in Sec.~\ref{sec:othBG}.
|
94 |
|
|
The BG prediction is
|
95 |
|
|
$N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 4.3 \pm 3.0({\rm stat}) \pm 1.2({\rm syst})$
|
96 |
benhoob |
1.29 |
where $K=1.52$ as derived in Sec.~\ref{sec:victory} and $K_C = 1.4 \pm 0.4$.
|
97 |
benhoob |
1.13 |
This prediction is consistent with the observed yield of
|
98 |
benhoob |
1.29 |
1 event, as summarized in Table~\ref{tab:victory} and Fig.~\ref{fig:victory}
|
99 |
benhoob |
1.12 |
(right).
|
100 |
benhoob |
1.11 |
|
101 |
claudioc |
1.1 |
|
102 |
claudioc |
1.3 |
\begin{figure}[hbt]
|
103 |
|
|
\begin{center}
|
104 |
benhoob |
1.30 |
\includegraphics[width=0.48\linewidth]{victory_control_38XMC.png}
|
105 |
|
|
\includegraphics[width=0.48\linewidth]{victory_signal_38XMC.png}
|
106 |
claudioc |
1.3 |
\caption{\label{fig:victory}\protect Distributions of
|
107 |
|
|
tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
|
108 |
|
|
We show the oberved distributions in both Monte Carlo and data.
|
109 |
|
|
We also show the distributions predicted from
|
110 |
benhoob |
1.4 |
${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.}
|
111 |
claudioc |
1.3 |
\end{center}
|
112 |
|
|
\end{figure}
|
113 |
|
|
|
114 |
|
|
|
115 |
benhoob |
1.9 |
\begin{table}[hbt]
|
116 |
|
|
\begin{center}
|
117 |
benhoob |
1.27 |
\caption{\label{tab:victory}Results of the dilepton $p_{T}$ template method in the control region
|
118 |
|
|
($125 < \mathrm{SumJetPt} < 300$~GeV) and signal region ($\mathrm{SumJetPt} > 300$~GeV). The predicted and
|
119 |
|
|
observed yields for the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}} > 8.5$~GeV$^{1/2}$. The errors are
|
120 |
benhoob |
1.31 |
statistical only, assuming Gaussian errors. Note that the correction factor $K_C = 1.4$ has been applied
|
121 |
|
|
to the data but not to the MC.}
|
122 |
benhoob |
1.29 |
\begin{tabular}{l|cc|cc}
|
123 |
benhoob |
1.27 |
\hline
|
124 |
|
|
& Control Region & & Signal Region & \\
|
125 |
benhoob |
1.9 |
\hline
|
126 |
benhoob |
1.27 |
& Predicted & Observed & Predicted & Observed \\
|
127 |
benhoob |
1.9 |
\hline
|
128 |
benhoob |
1.27 |
total SM MC & 6.36 & 9.03 & 0.92 & 1.29 \\
|
129 |
|
|
data & $10.7 \pm 6.6$ & 11 & $4.3 \pm 3.0$ & 1 \\
|
130 |
benhoob |
1.9 |
\hline
|
131 |
|
|
\end{tabular}
|
132 |
|
|
\end{center}
|
133 |
|
|
\end{table}
|
134 |
|
|
|
135 |
|
|
|
136 |
|
|
|
137 |
claudioc |
1.22 |
% \clearpage
|
138 |
claudioc |
1.3 |
\subsection{Summary of results}
|
139 |
benhoob |
1.21 |
|
140 |
benhoob |
1.28 |
In summary, in the signal region defined as $\mathrm{SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt} > 8.5$~GeV$^{1/2}$:\\
|
141 |
benhoob |
1.21 |
We observe 1 event. \\
|
142 |
benhoob |
1.28 |
We expect 1.3 events from Standard Model MC prediction. \\
|
143 |
benhoob |
1.27 |
The ABCD data driven method predicts $1.5 \pm 0.9({\rm stat}) \pm 0.3({\rm syst})$ events. \\
|
144 |
|
|
The $P_T(\ell\ell)$ method predicts $4.3 \pm 3.0({\rm stat}) \pm 1.2({\rm syst})$ events.
|
145 |
benhoob |
1.21 |
|
146 |
|
|
All three background estimates are consistent within their uncertainties.
|
147 |
|
|
We thus take as our best estimate of the Standard Model yield in
|
148 |
benhoob |
1.30 |
the signal region the average of the predicted yields from the 2 data-driven methods, weighted by their uncertainties.
|
149 |
|
|
This procedure gives an expected background yield $N_{BG}=1.7 \pm 1.1$.
|
150 |
benhoob |
1.21 |
|
151 |
|
|
We conclude that we see no evidence for an anomalous
|
152 |
claudioc |
1.1 |
rate of opposite sign isolated dilepton events
|
153 |
|
|
at high \met and high SumJetPt. The extraction of
|
154 |
|
|
quantitative limits on new physics models is discussed
|
155 |
benhoob |
1.5 |
in Section~\ref{sec:limit}. |