ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
Revision: 1.33
Committed: Wed Dec 8 12:14:49 2010 UTC (14 years, 4 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
Changes since 1.32: +2 -2 lines
Log Message:
Update with json v3

File Contents

# User Rev Content
1 claudioc 1.22 %\clearpage
2 benhoob 1.7
3 claudioc 1.1 \section{Results}
4     \label{sec:results}
5    
6     \begin{figure}[tbh]
7     \begin{center}
8 benhoob 1.32 \includegraphics[width=0.75\linewidth]{abcd_v3.png}
9 claudioc 1.1 \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
10 benhoob 1.29 vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data.}
11 claudioc 1.1 \end{center}
12     \end{figure}
13    
14 claudioc 1.2 The data, together with SM expectations is presented
15 benhoob 1.7 in Figure~\ref{fig:abcdData}. We see 1 event in the
16 claudioc 1.17 signal region (region $D$). For more information about
17     this one candidate events, see Appendix~\ref{sec:cand}.
18 benhoob 1.29 The Standard Model MC expectation is 1.3 events.
19 claudioc 1.2
20     \subsection{Background estimate from the ABCD method}
21     \label{sec:abcdres}
22    
23     The data yields in the
24     four regions are summarized in Table~\ref{tab:datayield}.
25 benhoob 1.32 The prediction of the ABCD method is is given by $A \times C / B = 1.3 \pm 0.8({\rm stat}) \pm 0.3({\rm syst})$.
26 claudioc 1.2
27 claudioc 1.1 \begin{table}[hbt]
28     \begin{center}
29     \caption{\label{tab:datayield} Data yields in the four
30 benhoob 1.7 regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
31 benhoob 1.29 by A $\times$ C / B. The quoted uncertainty
32 benhoob 1.4 on the prediction in data is statistical only, assuming Gaussian errors.
33 benhoob 1.32 We also show the SM Monte Carlo expectations, scaled to 34.0~pb$^{-1}$.}
34 benhoob 1.7 \begin{tabular}{l||c|c|c|c||c}
35 benhoob 1.32 %%%official json v3 33.96/pb, 38X MC (D6T for ttbar and DY)
36 benhoob 1.7 \hline
37 benhoob 1.32 sample & A & B & C & D & PRED \\
38 benhoob 1.24 \hline
39 benhoob 1.32 $t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 8.44 $\pm$ 0.18 & 32.83 $\pm$ 0.35 & 4.78 $\pm$ 0.14 & 1.07 $\pm$ 0.06 & 1.23 $\pm$ 0.05 \\
40     $t\bar{t}\rightarrow \mathrm{other}$ & 0.12 $\pm$ 0.02 & 0.78 $\pm$ 0.05 & 0.16 $\pm$ 0.02 & 0.02 $\pm$ 0.01 & 0.02 $\pm$ 0.01 \\
41     $Z^0 \rightarrow \ell^{+}\ell^{-}$ & 0.17 $\pm$ 0.08 & 1.18 $\pm$ 0.22 & 0.04 $\pm$ 0.04 & 0.12 $\pm$ 0.07 & 0.01 $\pm$ 0.01 \\
42     $W^{\pm}$ + jets & 0.00 $\pm$ 0.00 & 0.09 $\pm$ 0.09 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
43     $W^+W^-$ & 0.11 $\pm$ 0.01 & 0.29 $\pm$ 0.02 & 0.02 $\pm$ 0.01 & 0.03 $\pm$ 0.01 & 0.01 $\pm$ 0.00 \\
44 benhoob 1.26 $W^{\pm}Z^0$ & 0.01 $\pm$ 0.00 & 0.04 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
45     $Z^0Z^0$ & 0.01 $\pm$ 0.00 & 0.02 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
46 benhoob 1.32 single top & 0.29 $\pm$ 0.01 & 1.04 $\pm$ 0.03 & 0.04 $\pm$ 0.01 & 0.01 $\pm$ 0.00 & 0.01 $\pm$ 0.00 \\
47 benhoob 1.7 \hline
48 benhoob 1.32 total SM MC & 9.14 $\pm$ 0.20 & 36.26 $\pm$ 0.43 & 5.05 $\pm$ 0.14 & 1.27 $\pm$ 0.10 & 1.27 $\pm$ 0.05 \\
49 claudioc 1.1 \hline
50 benhoob 1.32 data & 12 & 37 & 4 & 1 & 1.30 $\pm$ 0.78 \\
51 claudioc 1.1 \hline
52     \end{tabular}
53     \end{center}
54     \end{table}
55    
56 claudioc 1.3 %As a cross-check, we can subtract from the yields in
57     %Table~\ref{tab:datayield} the expected DY contributions
58     %from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
59     %estimate of the $t\bar{t}$ contribution. The result
60     %of this exercise is {\color{red} xx} events.
61 claudioc 1.2
62 claudioc 1.22 %\clearpage
63 benhoob 1.10
64 claudioc 1.2 \subsection{Background estimate from the $P_T(\ell\ell)$ method}
65     \label{sec:victoryres}
66    
67 benhoob 1.11 We first use the $P_T(\ell \ell)$ method to predict the number of events
68 benhoob 1.12 in control region A, defined in Sec.~\ref{sec:abcd} as
69 benhoob 1.19 $125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5~GeV$^{1/2}$.
70 benhoob 1.12 We count the number of events in region
71     $A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
72     cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
73 benhoob 1.32 and find $N_{A'}=5$. We subtract off the expected DY contribution in this region
74     $N_{DY} = 1.3 \pm 0.9$, derived in Sec.~\ref{sec:othBG}.
75 benhoob 1.15 To predict the yield in region A we take
76 benhoob 1.32 $N_A = K \cdot K_C \cdot ( N_{A'} - N_{DY} ) = 9.0 \pm 6.0$
77     where we have taken $K = 1.7$ and $K_C = 1.4$.
78 benhoob 1.27 This uncertainty takes into account the statistical uncertainties in $N_{A'}$ and $N_{DY}$,
79 benhoob 1.32 assuming Gaussian errors. This yield is consistent
80     with the observed yield of 12 events, as shown in
81 benhoob 1.29 Table~\ref{tab:victory} and displayed in Fig.~\ref{fig:victory} (left).
82 benhoob 1.11
83     Encouraged by the good agreement between predicted and observed yields
84     in the control region, we proceed to perform the $P_T(\ell \ell)$ method
85     in the signal region ${\rm SumJetPt}>300$~GeV.
86 claudioc 1.2 The number of data events in region $D'$, which is defined in
87     Section~\ref{sec:othBG} to be the same as region $D$ but with the
88     $\met/\sqrt{\rm SumJetPt}$ requirement
89 benhoob 1.11 replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
90 benhoob 1.32 is $N_{D'}=1$.
91 benhoob 1.27 %We next subtract off the expected DY contribution of
92     %$N_{DY}$ = $0.4 \pm 0.4$ events, as calculated
93     %in Sec.~\ref{sec:othBG}.
94     The BG prediction is
95 benhoob 1.32 $N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 2.1 \pm 2.1({\rm stat}) \pm 0.6({\rm syst})$
96     where $K=1.5$ as derived in Sec.~\ref{sec:victory} and $K_C = 1.4 \pm 0.4$.
97     This prediction is consistent with the observed yield of 1 event, as summarized
98     in Table~\ref{tab:victory} and Fig.~\ref{fig:victory} (right).
99 benhoob 1.11
100 claudioc 1.1
101 claudioc 1.3 \begin{figure}[hbt]
102     \begin{center}
103 benhoob 1.32 \includegraphics[width=0.48\linewidth]{victory_control_v3.png}
104     \includegraphics[width=0.48\linewidth]{victory_signal_v3.png}
105 claudioc 1.3 \caption{\label{fig:victory}\protect Distributions of
106     tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
107     We show the oberved distributions in both Monte Carlo and data.
108     We also show the distributions predicted from
109 benhoob 1.4 ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.}
110 claudioc 1.3 \end{center}
111     \end{figure}
112    
113    
114 benhoob 1.9 \begin{table}[hbt]
115     \begin{center}
116 benhoob 1.27 \caption{\label{tab:victory}Results of the dilepton $p_{T}$ template method in the control region
117     ($125 < \mathrm{SumJetPt} < 300$~GeV) and signal region ($\mathrm{SumJetPt} > 300$~GeV). The predicted and
118     observed yields for the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}} > 8.5$~GeV$^{1/2}$. The errors are
119 benhoob 1.32 statistical only, assuming Gaussian errors. Note that the correction factor $K_C$ has been applied to
120 benhoob 1.33 the data but not to the MC. }
121 benhoob 1.29 \begin{tabular}{l|cc|cc}
122 benhoob 1.27 \hline
123     & Control Region & & Signal Region & \\
124 benhoob 1.9 \hline
125 benhoob 1.27 & Predicted & Observed & Predicted & Observed \\
126 benhoob 1.9 \hline
127 benhoob 1.32 total SM MC & 6.45 & 9.14 & 0.92 & 1.27 \\
128     data & $9.0 \pm 6.0$ & 12 & $2.1 \pm 2.1$ & 1 \\
129 benhoob 1.9 \hline
130     \end{tabular}
131     \end{center}
132     \end{table}
133    
134    
135    
136 claudioc 1.22 % \clearpage
137 claudioc 1.3 \subsection{Summary of results}
138 benhoob 1.21
139 benhoob 1.28 In summary, in the signal region defined as $\mathrm{SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt} > 8.5$~GeV$^{1/2}$:\\
140 benhoob 1.21 We observe 1 event. \\
141 benhoob 1.28 We expect 1.3 events from Standard Model MC prediction. \\
142 benhoob 1.32 The ABCD data driven method predicts $1.3 \pm 0.8({\rm stat}) \pm 0.3({\rm syst})$ events. \\
143 benhoob 1.33 The $P_T(\ell\ell)$ method predicts $2.1 \pm 2.1({\rm stat}) \pm 0.6({\rm syst})$ events. \\
144 benhoob 1.21
145     All three background estimates are consistent within their uncertainties.
146     We thus take as our best estimate of the Standard Model yield in
147 benhoob 1.32 the signal region the average of the predicted yields from the 2 data-driven methods,
148     weighted by their uncertainties.
149     This procedure gives an expected background yield $N_{BG}=1.4 \pm 0.8$.
150 benhoob 1.21
151     We conclude that we see no evidence for an anomalous
152 claudioc 1.1 rate of opposite sign isolated dilepton events
153     at high \met and high SumJetPt. The extraction of
154     quantitative limits on new physics models is discussed
155 benhoob 1.5 in Section~\ref{sec:limit}.