ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
Revision: 1.6
Committed: Mon Nov 8 13:10:39 2010 UTC (14 years, 5 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
CVS Tags: nov8th_official
Changes since 1.5: +3 -2 lines
Log Message:
K_fudge --> K_C

File Contents

# User Rev Content
1 claudioc 1.1 \section{Results}
2     \label{sec:results}
3    
4 claudioc 1.3 %\noindent {\color{red} In the 11 pb everything is very
5     %simple because there are a few zeros. This text is written
6     %for the full dataset under the assumption that some of these
7     %numbers will not be zero anymore.}
8 claudioc 1.1
9     \begin{figure}[tbh]
10     \begin{center}
11     \includegraphics[width=0.75\linewidth]{abcdData.png}
12     \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
13     vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data. Here we also
14     show our choice of ABCD regions.}
15     \end{center}
16     \end{figure}
17    
18    
19 claudioc 1.2 The data, together with SM expectations is presented
20     in Figure~\ref{fig:abcdData}. We see $\color{red} 0$
21     events in the signal region (region $D$). The Standard Model
22     MC expectation is {\color{red} 0.4} events.
23    
24     \subsection{Background estimate from the ABCD method}
25     \label{sec:abcdres}
26    
27     The data yields in the
28     four regions are summarized in Table~\ref{tab:datayield}.
29     The prediction of the ABCD method is is given by $AC/B$ and
30     is 0.5 events.
31     (see Table~\ref{tab:datayield}.
32    
33 claudioc 1.1 \begin{table}[hbt]
34     \begin{center}
35     \caption{\label{tab:datayield} Data yields in the four
36 benhoob 1.4 regions of Figure~\ref{fig:abcdData}. The quoted uncertainty
37     on the prediction in data is statistical only, assuming Gaussian errors.
38     We also show the SM Monte Carlo expectations.}
39 claudioc 1.1 \begin{tabular}{|l|c|c|c|c||c|}
40     \hline
41 claudioc 1.2 &A & B & C & D & AC/B \\ \hline
42 benhoob 1.4 Data &3 & 6 & 1 & 0 & $0.5^{+0.6}_{-0.5}$ \\
43 claudioc 1.1 SM MC &2.5 &11.2 & 1.5 & 0.4 & 0.4 \\
44     \hline
45     \end{tabular}
46     \end{center}
47     \end{table}
48    
49 claudioc 1.3 %As a cross-check, we can subtract from the yields in
50     %Table~\ref{tab:datayield} the expected DY contributions
51     %from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
52     %estimate of the $t\bar{t}$ contribution. The result
53     %of this exercise is {\color{red} xx} events.
54 claudioc 1.2
55     \subsection{Background estimate from the $P_T(\ell\ell)$ method}
56     \label{sec:victoryres}
57    
58     The number of data events in region $D'$, which is defined in
59     Section~\ref{sec:othBG} to be the same as region $D$ but with the
60     $\met/\sqrt{\rm SumJetPt}$ requirement
61     replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
62 claudioc 1.3 is $N_{D'}=1$. Thus the BG prediction is
63 benhoob 1.6 $N_D = K \cdot K_C \cdot N_{D'} = 1.5$
64     where $K=1.5 \pm xx$ as derived in Sec.~\ref{sec:victory} and
65     $K_C = 1$.
66 claudioc 1.2 Note that if we were to subtract off from region $D'$
67 claudioc 1.3 the {\color{red} 0.4 $\pm$ 0.4} DY events estimated from
68     Section~\ref{sec:othBG}, the background
69     prediction would change to $N_D=0.9 \pm xx$ events.
70 benhoob 1.4
71     %%%TO BE REPLACED
72     %{\color{red}As mentioned previously, for the 11/pb analysis
73     %we use the $K$ factor from data and take $K=1$.
74     %This will change for the full dataset. We will also pay
75     %more attention to the statistical errors.}
76    
77     %The number of data events in region $D'$, which is defined in
78     %Section~\ref{sec:othBG} to be the same as region $D$ but with the
79     %$\met/\sqrt{\rm SumJetPt}$ requirement
80     %replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
81     %is $N_{D'}=1$. Thus the BG prediction is
82     %$N_D = K \cdot K_{\rm fudge} \cdot N_{D'} = 1.5$
83     %where we used $K=1.5 \pm xx$ and $K_{\rm fudge}=1.0 \pm 0.0$.
84     %Note that if we were to subtract off from region $D'$
85     %the {\color{red} 0.4 $\pm$ 0.4} DY events estimated from
86     %Section~\ref{sec:othBG}, the background
87     %prediction would change to $N_D=0.9 \pm xx$ events.
88     %{\color{red} When we do this with a real
89     %$K_{\rm fudge}$, the fudge factor will be different
90     %after the DY subtraction.}
91 claudioc 1.1
92 claudioc 1.2 As a cross-check, we use the $P_T(\ell \ell)$
93 claudioc 1.1 method to also predict the number of events in the
94     control region $120<{\rm SumJetPt}<300$ GeV and
95     \met/$\sqrt{\rm SumJetPt} > 8.5$. We predict
96     $5.6^{+x}_{-y}$ events and we observe 4.
97 claudioc 1.3 The results of the $P_T(\ell\ell)$ method are
98     summarized in Figure~\ref{fig:victory}.
99 claudioc 1.1
100 claudioc 1.3 \begin{figure}[hbt]
101     \begin{center}
102     \includegraphics[width=0.48\linewidth]{victory_control.png}
103     \includegraphics[width=0.48\linewidth]{victory_sig.png}
104     \caption{\label{fig:victory}\protect Distributions of
105     tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
106     We show the oberved distributions in both Monte Carlo and data.
107     We also show the distributions predicted from
108 benhoob 1.4 ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.}
109 claudioc 1.3 \end{center}
110     \end{figure}
111    
112    
113     \subsection{Summary of results}
114 claudioc 1.1 To summarize: we see no evidence for an anomalous
115     rate of opposite sign isolated dilepton events
116     at high \met and high SumJetPt. The extraction of
117     quantitative limits on new physics models is discussed
118 benhoob 1.5 in Section~\ref{sec:limit}.