ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
Revision: 1.9
Committed: Thu Nov 11 09:20:56 2010 UTC (14 years, 5 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
Changes since 1.8: +39 -0 lines
Log Message:
Update victory results

File Contents

# User Rev Content
1 benhoob 1.7 \clearpage
2    
3 claudioc 1.1 \section{Results}
4     \label{sec:results}
5    
6     \begin{figure}[tbh]
7     \begin{center}
8 benhoob 1.7 \includegraphics[width=0.75\linewidth]{abcd_35pb.png}
9 claudioc 1.1 \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
10     vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data. Here we also
11     show our choice of ABCD regions.}
12     \end{center}
13     \end{figure}
14    
15 claudioc 1.2 The data, together with SM expectations is presented
16 benhoob 1.7 in Figure~\ref{fig:abcdData}. We see 1 event in the
17     signal region (region $D$). The Standard Model MC
18     expectation is 1.4 events.
19 claudioc 1.2
20     \subsection{Background estimate from the ABCD method}
21     \label{sec:abcdres}
22    
23     The data yields in the
24     four regions are summarized in Table~\ref{tab:datayield}.
25 benhoob 1.7 The prediction of the ABCD method is is given by $A\times C/B$ and
26     is 1.5 events. (see Table~\ref{tab:datayield}.
27 claudioc 1.2
28 claudioc 1.1 \begin{table}[hbt]
29     \begin{center}
30     \caption{\label{tab:datayield} Data yields in the four
31 benhoob 1.7 regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
32     by A$\times$C / B. The quoted uncertainty
33 benhoob 1.4 on the prediction in data is statistical only, assuming Gaussian errors.
34 benhoob 1.7 We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
35     \begin{tabular}{l||c|c|c|c||c}
36     \hline
37     sample & A & B & C & D & A$\times$C / B \\
38     \hline
39     $t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 7.96 & 33.07 & 4.81 & 1.20 & 1.16 \\
40     $t\bar{t}\rightarrow \mathrm{other}$ & 0.15 & 0.85 & 0.09 & 0.04 & 0.02 \\
41     $Z^0$ + jets & 0.00 & 1.16 & 0.08 & 0.08 & 0.00 \\
42     $W^{\pm}$ + jets & 0.00 & 0.10 & 0.00 & 0.00 & 0.00 \\
43     $W^+W^-$ & 0.19 & 0.29 & 0.02 & 0.07 & 0.02 \\
44     $W^{\pm}Z^0$ & 0.03 & 0.04 & 0.01 & 0.01 & 0.00 \\
45     $Z^0Z^0$ & 0.00 & 0.03 & 0.00 & 0.00 & 0.00 \\
46     single top & 0.28 & 1.00 & 0.04 & 0.01 & 0.01 \\
47     \hline
48     total SM MC & 8.61 & 36.54 & 5.05 & 1.41 & 1.19 \\
49 claudioc 1.1 \hline
50 benhoob 1.7 data & 11 & 36 & 5 & 1 &1.53 $\pm$ 0.86 \\
51 claudioc 1.1 \hline
52     \end{tabular}
53     \end{center}
54     \end{table}
55    
56 claudioc 1.3 %As a cross-check, we can subtract from the yields in
57     %Table~\ref{tab:datayield} the expected DY contributions
58     %from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
59     %estimate of the $t\bar{t}$ contribution. The result
60     %of this exercise is {\color{red} xx} events.
61 claudioc 1.2
62     \subsection{Background estimate from the $P_T(\ell\ell)$ method}
63     \label{sec:victoryres}
64    
65     The number of data events in region $D'$, which is defined in
66     Section~\ref{sec:othBG} to be the same as region $D$ but with the
67     $\met/\sqrt{\rm SumJetPt}$ requirement
68     replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
69 benhoob 1.8 is $N_{D'}=2$. Thus the BG prediction is
70 benhoob 1.6 $N_D = K \cdot K_C \cdot N_{D'} = 1.5$
71     where $K=1.5 \pm xx$ as derived in Sec.~\ref{sec:victory} and
72     $K_C = 1$.
73 claudioc 1.2 Note that if we were to subtract off from region $D'$
74 benhoob 1.8 the {\color{red} 0.8 $\pm$ 0.8} DY events estimated from
75 claudioc 1.3 Section~\ref{sec:othBG}, the background
76 benhoob 1.8 prediction would change to $N_D=1.8 \pm xx$ events.
77 benhoob 1.4
78     %%%TO BE REPLACED
79     %{\color{red}As mentioned previously, for the 11/pb analysis
80     %we use the $K$ factor from data and take $K=1$.
81     %This will change for the full dataset. We will also pay
82     %more attention to the statistical errors.}
83    
84     %The number of data events in region $D'$, which is defined in
85     %Section~\ref{sec:othBG} to be the same as region $D$ but with the
86     %$\met/\sqrt{\rm SumJetPt}$ requirement
87     %replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
88     %is $N_{D'}=1$. Thus the BG prediction is
89     %$N_D = K \cdot K_{\rm fudge} \cdot N_{D'} = 1.5$
90     %where we used $K=1.5 \pm xx$ and $K_{\rm fudge}=1.0 \pm 0.0$.
91     %Note that if we were to subtract off from region $D'$
92     %the {\color{red} 0.4 $\pm$ 0.4} DY events estimated from
93     %Section~\ref{sec:othBG}, the background
94     %prediction would change to $N_D=0.9 \pm xx$ events.
95     %{\color{red} When we do this with a real
96     %$K_{\rm fudge}$, the fudge factor will be different
97     %after the DY subtraction.}
98 claudioc 1.1
99 claudioc 1.2 As a cross-check, we use the $P_T(\ell \ell)$
100 claudioc 1.1 method to also predict the number of events in the
101 benhoob 1.8 control region $125<{\rm SumJetPt}<300$ GeV and
102 claudioc 1.1 \met/$\sqrt{\rm SumJetPt} > 8.5$. We predict
103     $5.6^{+x}_{-y}$ events and we observe 4.
104 claudioc 1.3 The results of the $P_T(\ell\ell)$ method are
105     summarized in Figure~\ref{fig:victory}.
106 claudioc 1.1
107 claudioc 1.3 \begin{figure}[hbt]
108     \begin{center}
109 benhoob 1.8 \includegraphics[width=0.48\linewidth]{victory_control_35pb.png}
110     \includegraphics[width=0.48\linewidth]{victory_signal_35pb.png}
111 claudioc 1.3 \caption{\label{fig:victory}\protect Distributions of
112     tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
113     We show the oberved distributions in both Monte Carlo and data.
114     We also show the distributions predicted from
115 benhoob 1.4 ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.}
116 claudioc 1.3 \end{center}
117     \end{figure}
118    
119    
120 benhoob 1.9 \begin{table}[hbt]
121     \begin{center}
122     \label{tab:victory_control}
123     \caption{Results of the dilepton $p_{T}$ template method in the control region
124     $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
125     the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
126     and MC. The error on the prediction for data is statistical only, assuming
127     Gaussian errors.}
128     \begin{tabular}{l|c|c|c}
129     \hline
130     & Predicted & Observed & Obs/Pred \\
131     \hline
132     total SM MC & 7.10 & 8.61 & 1.21 \\
133     data & 10.38 $\pm$ 4.24 & 11 & 1.06 \\
134     \hline
135     \end{tabular}
136     \end{center}
137     \end{table}
138    
139     \begin{table}[hbt]
140     \begin{center}
141     \label{tab:victory_control}
142     \caption{Results of the dilepton $p_{T}$ template method in the signal region
143     $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
144     the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
145     and MC. The error on the prediction for data is statistical only, assuming
146     Gaussian errors.}
147     \begin{tabular}{l|c|c|c}
148     \hline
149     & Predicted & Observed & Obs/Pred \\
150     \hline
151     total SM MC & 0.96 & 1.41 & 1.46 \\
152     data & 3.07 $\pm$ 2.17 & 1 & 0.33 \\
153     \hline
154     \end{tabular}
155     \end{center}
156     \end{table}
157    
158    
159 claudioc 1.3 \subsection{Summary of results}
160 claudioc 1.1 To summarize: we see no evidence for an anomalous
161     rate of opposite sign isolated dilepton events
162     at high \met and high SumJetPt. The extraction of
163     quantitative limits on new physics models is discussed
164 benhoob 1.5 in Section~\ref{sec:limit}.