ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/results.tex (file contents):
Revision 1.10 by benhoob, Thu Nov 11 12:44:58 2010 UTC vs.
Revision 1.13 by benhoob, Thu Nov 11 16:59:39 2010 UTC

# Line 24 | Line 24 | The data yields in the
24   four regions are summarized in Table~\ref{tab:datayield}.
25   The prediction of the ABCD method is is given by $A\times C/B$ and
26   is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming
27 < Gaussian errors). (see Table~\ref{tab:datayield}).  
27 > Gaussian errors), as shown in Table~\ref{tab:datayield}.  
28  
29   \begin{table}[hbt]
30   \begin{center}
# Line 65 | Line 65 | $W^{\pm}$ + jets   &           0.00   &
65   \subsection{Background estimate from the $P_T(\ell\ell)$ method}
66   \label{sec:victoryres}
67  
68 + We first use the $P_T(\ell \ell)$ method to predict the number of events
69 + in control region A, defined in Sec.~\ref{sec:abcd} as
70 + $125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5.
71 + We count the number of events in region
72 + $A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
73 + cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
74 + and find $N_{A'}=6$. To predict the yield in region A we take
75 + $N_A = K \cdot K_C \cdot N_{A'} = 10.4 \pm 4.2$
76 + (statistical uncertainty only, assuming Gaussian errors),
77 + where we have taken $K = 1.73$ and $K_C = 1$. This yield is in good
78 + agreement with the observed yield of 11 events, as shown in
79 + Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left).
80 + {\color{red} \bf Perform DY estimate for this control region}.
81 +
82 + Encouraged by the good agreement between predicted and observed yields
83 + in the control region, we proceed to perform the $P_T(\ell \ell)$ method
84 + in the signal region ${\rm SumJetPt}>300$~GeV.
85   The number of data events in region $D'$, which is defined in
86   Section~\ref{sec:othBG} to be the same as region $D$ but with the
87   $\met/\sqrt{\rm SumJetPt}$ requirement
88 < replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
89 < is $N_{D'}=2$.  Thus the BG prediction is
90 < $N_D = K \cdot K_C \cdot N_{D'} = 1.5$
91 < where $K=1.5 \pm xx$ as derived in Sec.~\ref{sec:victory} and
92 < $K_C = 1$.
93 < Note that if we were to subtract off from region $D'$
94 < the {\color{red} 0.8 $\pm$ 0.8} DY events estimated from
95 < Section~\ref{sec:othBG}, the background
96 < prediction would change to $N_D=1.8 \pm xx$ events.
97 <
98 < %%%TO BE REPLACED
99 < %{\color{red}As mentioned previously, for the 11/pb analysis
83 < %we use the $K$ factor from data and take $K=1$.
84 < %This will change for the full dataset.  We will also pay
85 < %more attention to the statistical errors.}
86 <
87 < %The number of data events in region $D'$, which is defined in
88 < %Section~\ref{sec:othBG} to be the same as region $D$ but with the
89 < %$\met/\sqrt{\rm SumJetPt}$ requirement
90 < %replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
91 < %is $N_{D'}=1$.  Thus the BG prediction is
92 < %$N_D = K \cdot K_{\rm fudge} \cdot N_{D'} = 1.5$
93 < %where we used $K=1.5 \pm xx$ and $K_{\rm fudge}=1.0 \pm 0.0$.
94 < %Note that if we were to subtract off from region $D'$
95 < %the {\color{red} 0.4 $\pm$ 0.4} DY events estimated from
96 < %Section~\ref{sec:othBG}, the background
97 < %prediction would change to $N_D=0.9 \pm xx$ events.
98 < %{\color{red} When we do this with a real
99 < %$K_{\rm fudge}$, the fudge factor will be different
100 < %after the DY subtraction.}
101 <
102 < As a cross-check, we use the $P_T(\ell \ell)$
103 < method to also predict the number of events in the
104 < control region $125<{\rm SumJetPt}<300$ GeV and
105 < \met/$\sqrt{\rm SumJetPt} > 8.5$.  We predict
106 < $5.6^{+x}_{-y}$ events and we observe 4.
107 < The results of the $P_T(\ell\ell)$ method are
108 < summarized in Figure~\ref{fig:victory}.
88 > replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
89 > is $N_{D'}=2$.  
90 > We next subtract off the expected DY contribution of
91 > {\color{red} \bf $N_{DY}$ = 0.8 $\pm$ 0.8 (update DY estimate)} events, as calculated
92 > in Sec.~\ref{sec:othBG}. The BG prediction is
93 > $N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 1.8^{+2.5}_{-1.8}$ (statistical
94 > uncertainty only, assuming Gaussian errors), where $K=1.54 \pm xx$
95 > as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
96 > This prediction is consistent with the observed yield of
97 > 1 event, as summarized in Table~\ref{tab:victory_signal} and Fig.~\ref{fig:victory}
98 > (right).
99 >
100  
101   \begin{figure}[hbt]
102   \begin{center}
# Line 122 | Line 113 | ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in
113  
114   \begin{table}[hbt]
115   \begin{center}
116 < \label{tab:victory_control}
126 < \caption{Results of the dilepton $p_{T}$ template method in the control region
116 > \caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region
117   $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
118   the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
119   and MC. The error on the prediction for data is statistical only, assuming
120   Gaussian errors.}
121 < \begin{tabular}{l|c|c|c}
121 > \begin{tabular}{lccc}
122   \hline
123                & Predicted           &   Observed &  Obs/Pred \\
124   \hline
# Line 141 | Line 131 | total SM   MC &      7.10           &
131  
132   \begin{table}[hbt]
133   \begin{center}
134 < \label{tab:victory_control}
135 < \caption{Results of the dilepton $p_{T}$ template method in the signal region
146 < $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
134 > \caption{\label{tab:victory_signal}Results of the dilepton $p_{T}$ template method in the signal region
135 > $\mathrm{sumJetPt} > 300$~GeV. The predicted and observed yields for
136   the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
137   and MC. The error on the prediction for data is statistical only, assuming
138   Gaussian errors.}
139 < \begin{tabular}{l|c|c|c}
139 > \begin{tabular}{lccc}
140   \hline
141 <              & Predicted           &   Observed &  Obs/Pred \\
141 >              & Predicted                &   Observed &  Obs/Pred \\
142   \hline
143 < total SM   MC &      0.96           &       1.41 &      1.46 \\
144 <         data &     3.07 $\pm$ 2.17 &          1 &      0.33 \\
143 > total SM   MC &      0.96                &       1.41 &      1.46 \\
144 >         data &  $1.8^{+2.5}_{-1.8}$     &          1 &      0.56 \\
145   \hline
146   \end{tabular}
147   \end{center}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines