ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/results.tex (file contents):
Revision 1.2 by claudioc, Fri Nov 5 23:07:43 2010 UTC vs.
Revision 1.10 by benhoob, Thu Nov 11 12:44:58 2010 UTC

# Line 1 | Line 1
1 + \clearpage
2 +
3   \section{Results}
4   \label{sec:results}
5  
4 \noindent {\color{red} In the 11 pb everything is very
5 simple because there are a few zeros.  This text is written
6 for the full dataset under the assumption that some of these
7 numbers will not be zero anymore.}
8
6   \begin{figure}[tbh]
7   \begin{center}
8 < \includegraphics[width=0.75\linewidth]{abcdData.png}
8 > \includegraphics[width=0.75\linewidth]{abcd_35pb.png}
9   \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
10   vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data.  Here we also
11   show our choice of ABCD regions.}
12   \end{center}
13   \end{figure}
14  
18
15   The data, together with SM expectations is presented
16 < in Figure~\ref{fig:abcdData}.  We see $\color{red} 0$
17 < events in the signal region (region $D$).  The Standard Model
18 < MC expectation is {\color{red} 0.4} events.
16 > in Figure~\ref{fig:abcdData}.  We see 1 event in the
17 > signal region (region $D$).  The Standard Model MC
18 > expectation is 1.4 events.
19  
20   \subsection{Background estimate from the ABCD method}
21   \label{sec:abcdres}
22  
23   The data yields in the
24   four regions are summarized in Table~\ref{tab:datayield}.
25 < The prediction of the ABCD method is is given by $AC/B$ and
26 < is 0.5 events.
27 < (see Table~\ref{tab:datayield}.  
25 > The prediction of the ABCD method is is given by $A\times C/B$ and
26 > is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming
27 > Gaussian errors). (see Table~\ref{tab:datayield}).  
28  
29   \begin{table}[hbt]
30   \begin{center}
31   \caption{\label{tab:datayield} Data yields in the four
32 < regions of Figure~\ref{fig:abcdData}.  We also show the
33 < SM Monte Carlo expectations.}
34 < \begin{tabular}{|l|c|c|c|c||c|}
35 < \hline
36 <      &A   & B    & C   & D   & AC/B \\ \hline
37 < Data  &3   & 6    & 1   & 0   & $0.5^{+x}_{-y}$ \\
38 < SM MC &2.5 &11.2  & 1.5 & 0.4 & 0.4 \\
32 > regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
33 > by A$\times$C / B.  The quoted uncertainty
34 > on the prediction in data is statistical only, assuming Gaussian errors.
35 > We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
36 > \begin{tabular}{l||c|c|c|c||c}
37 > \hline
38 >         sample   &              A   &              B   &              C   &              D   & A$\times$C / B  \\
39 > \hline
40 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
41 > $t\bar{t}\rightarrow \mathrm{other}$   &           0.15   &           0.85   &           0.09   &           0.04   &           0.02  \\
42 >   $Z^0$ + jets   &           0.00   &           1.16   &           0.08   &           0.08   &           0.00  \\
43 > $W^{\pm}$ + jets   &           0.00   &           0.10   &           0.00   &           0.00   &           0.00  \\
44 >       $W^+W^-$   &           0.19   &           0.29   &           0.02   &           0.07   &           0.02  \\
45 >   $W^{\pm}Z^0$   &           0.03   &           0.04   &           0.01   &           0.01   &           0.00  \\
46 >       $Z^0Z^0$   &           0.00   &           0.03   &           0.00   &           0.00   &           0.00  \\
47 >     single top   &           0.28   &           1.00   &           0.04   &           0.01   &           0.01  \\
48 > \hline
49 >    total SM MC   &           8.61   &          36.54   &           5.05   &           1.41   &           1.19  \\
50 > \hline
51 >           data   &             11   &             36   &              5   &              1   &1.53 $\pm$ 0.86  \\
52   \hline
53   \end{tabular}
54   \end{center}
55   \end{table}
56  
57 < As a cross-check, we can subtract from the yields in
58 < Table~\ref{tab:datayield} the expected DY contributions
59 < from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
60 < estimate of the $t\bar{t}$ contribution.  The result
61 < of this exercise is {\color{red} xx} events.
57 > %As a cross-check, we can subtract from the yields in
58 > %Table~\ref{tab:datayield} the expected DY contributions
59 > %from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
60 > %estimate of the $t\bar{t}$ contribution.  The result
61 > %of this exercise is {\color{red} xx} events.
62 >
63 > \clearpage
64  
65   \subsection{Background estimate from the $P_T(\ell\ell)$ method}
66   \label{sec:victoryres}
67  
57
58
68   The number of data events in region $D'$, which is defined in
69   Section~\ref{sec:othBG} to be the same as region $D$ but with the
70   $\met/\sqrt{\rm SumJetPt}$ requirement
71   replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
72 < is $N_{D'}=0$.  Thus the BG prediction is
73 < $N_D = K^{MC} \cdot K_{\rm fudge} \cdot N_{D'} = xx$
74 < where we used $K^{MC}=xx$ and $K_{\rm fudge}=xx \pm yy$.
72 > is $N_{D'}=2$.  Thus the BG prediction is
73 > $N_D = K \cdot K_C \cdot N_{D'} = 1.5$
74 > where $K=1.5 \pm xx$ as derived in Sec.~\ref{sec:victory} and
75 > $K_C = 1$.
76   Note that if we were to subtract off from region $D'$
77 < the {\color{red} $xx$} DY events estimated from
78 < Table~\ref{tab:ABCD-DYptll}, the background
79 < prediction would change to $N_D=xx$.
77 > the {\color{red} 0.8 $\pm$ 0.8} DY events estimated from
78 > Section~\ref{sec:othBG}, the background
79 > prediction would change to $N_D=1.8 \pm xx$ events.
80 >
81 > %%%TO BE REPLACED
82 > %{\color{red}As mentioned previously, for the 11/pb analysis
83 > %we use the $K$ factor from data and take $K=1$.
84 > %This will change for the full dataset.  We will also pay
85 > %more attention to the statistical errors.}
86 >
87 > %The number of data events in region $D'$, which is defined in
88 > %Section~\ref{sec:othBG} to be the same as region $D$ but with the
89 > %$\met/\sqrt{\rm SumJetPt}$ requirement
90 > %replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
91 > %is $N_{D'}=1$.  Thus the BG prediction is
92 > %$N_D = K \cdot K_{\rm fudge} \cdot N_{D'} = 1.5$
93 > %where we used $K=1.5 \pm xx$ and $K_{\rm fudge}=1.0 \pm 0.0$.
94 > %Note that if we were to subtract off from region $D'$
95 > %the {\color{red} 0.4 $\pm$ 0.4} DY events estimated from
96 > %Section~\ref{sec:othBG}, the background
97 > %prediction would change to $N_D=0.9 \pm xx$ events.
98 > %{\color{red} When we do this with a real
99 > %$K_{\rm fudge}$, the fudge factor will be different
100 > %after the DY subtraction.}
101  
102   As a cross-check, we use the $P_T(\ell \ell)$
103   method to also predict the number of events in the
104 < control region $120<{\rm SumJetPt}<300$ GeV and
104 > control region $125<{\rm SumJetPt}<300$ GeV and
105   \met/$\sqrt{\rm SumJetPt} > 8.5$.  We predict
106   $5.6^{+x}_{-y}$ events and we observe 4.
107 < {\color{red} Note: when we do this more carefully
108 < we will need to use a different $K$ and a different $K_{fudge}$>}
107 > The results of the $P_T(\ell\ell)$ method are
108 > summarized in Figure~\ref{fig:victory}.
109 >
110 > \begin{figure}[hbt]
111 > \begin{center}
112 > \includegraphics[width=0.48\linewidth]{victory_control_35pb.png}
113 > \includegraphics[width=0.48\linewidth]{victory_signal_35pb.png}
114 > \caption{\label{fig:victory}\protect Distributions of
115 > tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
116 > We show the oberved distributions in both Monte Carlo and data.
117 > We also show the distributions predicted from
118 > ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.}
119 > \end{center}
120 > \end{figure}
121 >
122 >
123 > \begin{table}[hbt]
124 > \begin{center}
125 > \label{tab:victory_control}
126 > \caption{Results of the dilepton $p_{T}$ template method in the control region
127 > $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
128 > the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
129 > and MC. The error on the prediction for data is statistical only, assuming
130 > Gaussian errors.}
131 > \begin{tabular}{l|c|c|c}
132 > \hline
133 >              & Predicted           &   Observed &  Obs/Pred \\
134 > \hline
135 > total SM   MC &      7.10           &       8.61 &      1.21 \\
136 >         data &    10.38 $\pm$ 4.24 &         11 &      1.06 \\
137 > \hline
138 > \end{tabular}
139 > \end{center}
140 > \end{table}
141 >
142 > \begin{table}[hbt]
143 > \begin{center}
144 > \label{tab:victory_control}
145 > \caption{Results of the dilepton $p_{T}$ template method in the signal region
146 > $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
147 > the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
148 > and MC. The error on the prediction for data is statistical only, assuming
149 > Gaussian errors.}
150 > \begin{tabular}{l|c|c|c}
151 > \hline
152 >              & Predicted           &   Observed &  Obs/Pred \\
153 > \hline
154 > total SM   MC &      0.96           &       1.41 &      1.46 \\
155 >         data &     3.07 $\pm$ 2.17 &          1 &      0.33 \\
156 > \hline
157 > \end{tabular}
158 > \end{center}
159 > \end{table}
160 >
161  
162 + \subsection{Summary of results}
163   To summarize: we see no evidence for an anomalous
164   rate of opposite sign isolated dilepton events
165   at high \met and high SumJetPt.  The extraction of
166   quantitative limits on new physics models is discussed
167 < in Section~\ref{sec:limits}.
167 > in Section~\ref{sec:limit}.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines