ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/results.tex (file contents):
Revision 1.4 by benhoob, Mon Nov 8 11:08:01 2010 UTC vs.
Revision 1.10 by benhoob, Thu Nov 11 12:44:58 2010 UTC

# Line 1 | Line 1
1 + \clearpage
2 +
3   \section{Results}
4   \label{sec:results}
5  
4 %\noindent {\color{red} In the 11 pb everything is very
5 %simple because there are a few zeros.  This text is written
6 %for the full dataset under the assumption that some of these
7 %numbers will not be zero anymore.}
8
6   \begin{figure}[tbh]
7   \begin{center}
8 < \includegraphics[width=0.75\linewidth]{abcdData.png}
8 > \includegraphics[width=0.75\linewidth]{abcd_35pb.png}
9   \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
10   vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data.  Here we also
11   show our choice of ABCD regions.}
12   \end{center}
13   \end{figure}
14  
18
15   The data, together with SM expectations is presented
16 < in Figure~\ref{fig:abcdData}.  We see $\color{red} 0$
17 < events in the signal region (region $D$).  The Standard Model
18 < MC expectation is {\color{red} 0.4} events.
16 > in Figure~\ref{fig:abcdData}.  We see 1 event in the
17 > signal region (region $D$).  The Standard Model MC
18 > expectation is 1.4 events.
19  
20   \subsection{Background estimate from the ABCD method}
21   \label{sec:abcdres}
22  
23   The data yields in the
24   four regions are summarized in Table~\ref{tab:datayield}.
25 < The prediction of the ABCD method is is given by $AC/B$ and
26 < is 0.5 events.
27 < (see Table~\ref{tab:datayield}.  
25 > The prediction of the ABCD method is is given by $A\times C/B$ and
26 > is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming
27 > Gaussian errors). (see Table~\ref{tab:datayield}).  
28  
29   \begin{table}[hbt]
30   \begin{center}
31   \caption{\label{tab:datayield} Data yields in the four
32 < regions of Figure~\ref{fig:abcdData}.  The quoted uncertainty
32 > regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
33 > by A$\times$C / B.  The quoted uncertainty
34   on the prediction in data is statistical only, assuming Gaussian errors.
35 < We also show the SM Monte Carlo expectations.}
36 < \begin{tabular}{|l|c|c|c|c||c|}
35 > We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
36 > \begin{tabular}{l||c|c|c|c||c}
37 > \hline
38 >         sample   &              A   &              B   &              C   &              D   & A$\times$C / B  \\
39   \hline
40 <      &A   & B    & C   & D   & AC/B \\ \hline
41 < Data  &3   & 6    & 1   & 0   & $0.5^{+0.6}_{-0.5}$ \\
42 < SM MC &2.5 &11.2  & 1.5 & 0.4 & 0.4 \\
40 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
41 > $t\bar{t}\rightarrow \mathrm{other}$   &           0.15   &           0.85   &           0.09   &           0.04   &           0.02  \\
42 >   $Z^0$ + jets   &           0.00   &           1.16   &           0.08   &           0.08   &           0.00  \\
43 > $W^{\pm}$ + jets   &           0.00   &           0.10   &           0.00   &           0.00   &           0.00  \\
44 >       $W^+W^-$   &           0.19   &           0.29   &           0.02   &           0.07   &           0.02  \\
45 >   $W^{\pm}Z^0$   &           0.03   &           0.04   &           0.01   &           0.01   &           0.00  \\
46 >       $Z^0Z^0$   &           0.00   &           0.03   &           0.00   &           0.00   &           0.00  \\
47 >     single top   &           0.28   &           1.00   &           0.04   &           0.01   &           0.01  \\
48 > \hline
49 >    total SM MC   &           8.61   &          36.54   &           5.05   &           1.41   &           1.19  \\
50 > \hline
51 >           data   &             11   &             36   &              5   &              1   &1.53 $\pm$ 0.86  \\
52   \hline
53   \end{tabular}
54   \end{center}
# Line 52 | Line 60 | SM MC &2.5 &11.2  & 1.5 & 0.4 & 0.4 \\
60   %estimate of the $t\bar{t}$ contribution.  The result
61   %of this exercise is {\color{red} xx} events.
62  
63 + \clearpage
64 +
65   \subsection{Background estimate from the $P_T(\ell\ell)$ method}
66   \label{sec:victoryres}
67  
# Line 59 | Line 69 | The number of data events in region $D'$
69   Section~\ref{sec:othBG} to be the same as region $D$ but with the
70   $\met/\sqrt{\rm SumJetPt}$ requirement
71   replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
72 < is $N_{D'}=1$.  Thus the BG prediction is
73 < $N_D = K \cdot N_{D'} = 1.5$
74 < where $K=1.5 \pm xx$ as derived in Sec.~\ref{sec:victory}.
72 > is $N_{D'}=2$.  Thus the BG prediction is
73 > $N_D = K \cdot K_C \cdot N_{D'} = 1.5$
74 > where $K=1.5 \pm xx$ as derived in Sec.~\ref{sec:victory} and
75 > $K_C = 1$.
76   Note that if we were to subtract off from region $D'$
77 < the {\color{red} 0.4 $\pm$ 0.4} DY events estimated from
77 > the {\color{red} 0.8 $\pm$ 0.8} DY events estimated from
78   Section~\ref{sec:othBG}, the background
79 < prediction would change to $N_D=0.9 \pm xx$ events.
79 > prediction would change to $N_D=1.8 \pm xx$ events.
80  
81   %%%TO BE REPLACED
82   %{\color{red}As mentioned previously, for the 11/pb analysis
# Line 90 | Line 101 | prediction would change to $N_D=0.9 \pm
101  
102   As a cross-check, we use the $P_T(\ell \ell)$
103   method to also predict the number of events in the
104 < control region $120<{\rm SumJetPt}<300$ GeV and
104 > control region $125<{\rm SumJetPt}<300$ GeV and
105   \met/$\sqrt{\rm SumJetPt} > 8.5$.  We predict
106   $5.6^{+x}_{-y}$ events and we observe 4.
107   The results of the $P_T(\ell\ell)$ method are
# Line 98 | Line 109 | summarized in Figure~\ref{fig:victory}.
109  
110   \begin{figure}[hbt]
111   \begin{center}
112 < \includegraphics[width=0.48\linewidth]{victory_control.png}
113 < \includegraphics[width=0.48\linewidth]{victory_sig.png}
112 > \includegraphics[width=0.48\linewidth]{victory_control_35pb.png}
113 > \includegraphics[width=0.48\linewidth]{victory_signal_35pb.png}
114   \caption{\label{fig:victory}\protect Distributions of
115   tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
116   We show the oberved distributions in both Monte Carlo and data.
# Line 109 | Line 120 | ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in
120   \end{figure}
121  
122  
123 + \begin{table}[hbt]
124 + \begin{center}
125 + \label{tab:victory_control}
126 + \caption{Results of the dilepton $p_{T}$ template method in the control region
127 + $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
128 + the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
129 + and MC. The error on the prediction for data is statistical only, assuming
130 + Gaussian errors.}
131 + \begin{tabular}{l|c|c|c}
132 + \hline
133 +              & Predicted           &   Observed &  Obs/Pred \\
134 + \hline
135 + total SM   MC &      7.10           &       8.61 &      1.21 \\
136 +         data &    10.38 $\pm$ 4.24 &         11 &      1.06 \\
137 + \hline
138 + \end{tabular}
139 + \end{center}
140 + \end{table}
141 +
142 + \begin{table}[hbt]
143 + \begin{center}
144 + \label{tab:victory_control}
145 + \caption{Results of the dilepton $p_{T}$ template method in the signal region
146 + $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
147 + the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
148 + and MC. The error on the prediction for data is statistical only, assuming
149 + Gaussian errors.}
150 + \begin{tabular}{l|c|c|c}
151 + \hline
152 +              & Predicted           &   Observed &  Obs/Pred \\
153 + \hline
154 + total SM   MC &      0.96           &       1.41 &      1.46 \\
155 +         data &     3.07 $\pm$ 2.17 &          1 &      0.33 \\
156 + \hline
157 + \end{tabular}
158 + \end{center}
159 + \end{table}
160 +
161 +
162   \subsection{Summary of results}
163   To summarize: we see no evidence for an anomalous
164   rate of opposite sign isolated dilepton events
165   at high \met and high SumJetPt.  The extraction of
166   quantitative limits on new physics models is discussed
167 < in Section~\ref{sec:limits}.
167 > in Section~\ref{sec:limit}.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines