23 |
|
The data yields in the |
24 |
|
four regions are summarized in Table~\ref{tab:datayield}. |
25 |
|
The prediction of the ABCD method is is given by $A\times C/B$ and |
26 |
< |
is 1.5 events. (see Table~\ref{tab:datayield}. |
26 |
> |
is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming |
27 |
> |
Gaussian errors). (see Table~\ref{tab:datayield}). |
28 |
|
|
29 |
|
\begin{table}[hbt] |
30 |
|
\begin{center} |
60 |
|
%estimate of the $t\bar{t}$ contribution. The result |
61 |
|
%of this exercise is {\color{red} xx} events. |
62 |
|
|
63 |
+ |
\clearpage |
64 |
+ |
|
65 |
|
\subsection{Background estimate from the $P_T(\ell\ell)$ method} |
66 |
|
\label{sec:victoryres} |
67 |
|
|
69 |
|
Section~\ref{sec:othBG} to be the same as region $D$ but with the |
70 |
|
$\met/\sqrt{\rm SumJetPt}$ requirement |
71 |
|
replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement |
72 |
< |
is $N_{D'}=1$. Thus the BG prediction is |
72 |
> |
is $N_{D'}=2$. Thus the BG prediction is |
73 |
|
$N_D = K \cdot K_C \cdot N_{D'} = 1.5$ |
74 |
|
where $K=1.5 \pm xx$ as derived in Sec.~\ref{sec:victory} and |
75 |
|
$K_C = 1$. |
76 |
|
Note that if we were to subtract off from region $D'$ |
77 |
< |
the {\color{red} 0.4 $\pm$ 0.4} DY events estimated from |
77 |
> |
the {\color{red} 0.8 $\pm$ 0.8} DY events estimated from |
78 |
|
Section~\ref{sec:othBG}, the background |
79 |
< |
prediction would change to $N_D=0.9 \pm xx$ events. |
79 |
> |
prediction would change to $N_D=1.8 \pm xx$ events. |
80 |
|
|
81 |
|
%%%TO BE REPLACED |
82 |
|
%{\color{red}As mentioned previously, for the 11/pb analysis |
101 |
|
|
102 |
|
As a cross-check, we use the $P_T(\ell \ell)$ |
103 |
|
method to also predict the number of events in the |
104 |
< |
control region $120<{\rm SumJetPt}<300$ GeV and |
104 |
> |
control region $125<{\rm SumJetPt}<300$ GeV and |
105 |
|
\met/$\sqrt{\rm SumJetPt} > 8.5$. We predict |
106 |
|
$5.6^{+x}_{-y}$ events and we observe 4. |
107 |
|
The results of the $P_T(\ell\ell)$ method are |
109 |
|
|
110 |
|
\begin{figure}[hbt] |
111 |
|
\begin{center} |
112 |
< |
\includegraphics[width=0.48\linewidth]{victory_control.png} |
113 |
< |
\includegraphics[width=0.48\linewidth]{victory_sig.png} |
112 |
> |
\includegraphics[width=0.48\linewidth]{victory_control_35pb.png} |
113 |
> |
\includegraphics[width=0.48\linewidth]{victory_signal_35pb.png} |
114 |
|
\caption{\label{fig:victory}\protect Distributions of |
115 |
|
tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region. |
116 |
|
We show the oberved distributions in both Monte Carlo and data. |
120 |
|
\end{figure} |
121 |
|
|
122 |
|
|
123 |
+ |
\begin{table}[hbt] |
124 |
+ |
\begin{center} |
125 |
+ |
\label{tab:victory_control} |
126 |
+ |
\caption{Results of the dilepton $p_{T}$ template method in the control region |
127 |
+ |
$125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for |
128 |
+ |
the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data |
129 |
+ |
and MC. The error on the prediction for data is statistical only, assuming |
130 |
+ |
Gaussian errors.} |
131 |
+ |
\begin{tabular}{l|c|c|c} |
132 |
+ |
\hline |
133 |
+ |
& Predicted & Observed & Obs/Pred \\ |
134 |
+ |
\hline |
135 |
+ |
total SM MC & 7.10 & 8.61 & 1.21 \\ |
136 |
+ |
data & 10.38 $\pm$ 4.24 & 11 & 1.06 \\ |
137 |
+ |
\hline |
138 |
+ |
\end{tabular} |
139 |
+ |
\end{center} |
140 |
+ |
\end{table} |
141 |
+ |
|
142 |
+ |
\begin{table}[hbt] |
143 |
+ |
\begin{center} |
144 |
+ |
\label{tab:victory_control} |
145 |
+ |
\caption{Results of the dilepton $p_{T}$ template method in the signal region |
146 |
+ |
$125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for |
147 |
+ |
the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data |
148 |
+ |
and MC. The error on the prediction for data is statistical only, assuming |
149 |
+ |
Gaussian errors.} |
150 |
+ |
\begin{tabular}{l|c|c|c} |
151 |
+ |
\hline |
152 |
+ |
& Predicted & Observed & Obs/Pred \\ |
153 |
+ |
\hline |
154 |
+ |
total SM MC & 0.96 & 1.41 & 1.46 \\ |
155 |
+ |
data & 3.07 $\pm$ 2.17 & 1 & 0.33 \\ |
156 |
+ |
\hline |
157 |
+ |
\end{tabular} |
158 |
+ |
\end{center} |
159 |
+ |
\end{table} |
160 |
+ |
|
161 |
+ |
|
162 |
|
\subsection{Summary of results} |
163 |
|
To summarize: we see no evidence for an anomalous |
164 |
|
rate of opposite sign isolated dilepton events |