1 |
+ |
\clearpage |
2 |
+ |
|
3 |
|
\section{Results} |
4 |
|
\label{sec:results} |
5 |
|
|
4 |
– |
The data, together with SM expectations is presented |
5 |
– |
in Figure~\ref{fig:abcdData}. The data yields in the |
6 |
– |
four regions are summarized in Table~\ref{tab:datayield}. |
7 |
– |
|
8 |
– |
|
9 |
– |
|
6 |
|
\begin{figure}[tbh] |
7 |
|
\begin{center} |
8 |
< |
\includegraphics[width=0.75\linewidth]{abcdData.png} |
8 |
> |
\includegraphics[width=0.75\linewidth]{abcd_35pb.png} |
9 |
|
\caption{\label{fig:abcdData}\protect Distributions of SumJetPt |
10 |
|
vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data. Here we also |
11 |
|
show our choice of ABCD regions.} |
12 |
|
\end{center} |
13 |
|
\end{figure} |
14 |
|
|
15 |
+ |
The data, together with SM expectations is presented |
16 |
+ |
in Figure~\ref{fig:abcdData}. We see 1 event in the |
17 |
+ |
signal region (region $D$). The Standard Model MC |
18 |
+ |
expectation is 1.4 events. |
19 |
+ |
|
20 |
+ |
\subsection{Background estimate from the ABCD method} |
21 |
+ |
\label{sec:abcdres} |
22 |
+ |
|
23 |
+ |
The data yields in the |
24 |
+ |
four regions are summarized in Table~\ref{tab:datayield}. |
25 |
+ |
The prediction of the ABCD method is is given by $A\times C/B$ and |
26 |
+ |
is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming |
27 |
+ |
Gaussian errors). (see Table~\ref{tab:datayield}). |
28 |
|
|
29 |
|
\begin{table}[hbt] |
30 |
|
\begin{center} |
31 |
|
\caption{\label{tab:datayield} Data yields in the four |
32 |
< |
regions of Figure~\ref{fig:abcdData}. We also show the |
33 |
< |
SM Monte Carlo expectations.} |
34 |
< |
\begin{tabular}{|l|c|c|c|c||c|} |
35 |
< |
\hline |
36 |
< |
&A & B & C & D & AC/D \\ \hline |
37 |
< |
Data &3 & 6 & 1 & 0 & $0.5^{+x}_{-y}$ \\ |
38 |
< |
SM MC &2.5 &11.2 & 1.5 & 0.4 & 0.4 \\ |
32 |
> |
regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given |
33 |
> |
by A$\times$C / B. The quoted uncertainty |
34 |
> |
on the prediction in data is statistical only, assuming Gaussian errors. |
35 |
> |
We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.} |
36 |
> |
\begin{tabular}{l||c|c|c|c||c} |
37 |
> |
\hline |
38 |
> |
sample & A & B & C & D & A$\times$C / B \\ |
39 |
> |
\hline |
40 |
> |
$t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 7.96 & 33.07 & 4.81 & 1.20 & 1.16 \\ |
41 |
> |
$t\bar{t}\rightarrow \mathrm{other}$ & 0.15 & 0.85 & 0.09 & 0.04 & 0.02 \\ |
42 |
> |
$Z^0$ + jets & 0.00 & 1.16 & 0.08 & 0.08 & 0.00 \\ |
43 |
> |
$W^{\pm}$ + jets & 0.00 & 0.10 & 0.00 & 0.00 & 0.00 \\ |
44 |
> |
$W^+W^-$ & 0.19 & 0.29 & 0.02 & 0.07 & 0.02 \\ |
45 |
> |
$W^{\pm}Z^0$ & 0.03 & 0.04 & 0.01 & 0.01 & 0.00 \\ |
46 |
> |
$Z^0Z^0$ & 0.00 & 0.03 & 0.00 & 0.00 & 0.00 \\ |
47 |
> |
single top & 0.28 & 1.00 & 0.04 & 0.01 & 0.01 \\ |
48 |
> |
\hline |
49 |
> |
total SM MC & 8.61 & 36.54 & 5.05 & 1.41 & 1.19 \\ |
50 |
> |
\hline |
51 |
> |
data & 11 & 36 & 5 & 1 &1.53 $\pm$ 0.86 \\ |
52 |
> |
\hline |
53 |
> |
\end{tabular} |
54 |
> |
\end{center} |
55 |
> |
\end{table} |
56 |
> |
|
57 |
> |
%As a cross-check, we can subtract from the yields in |
58 |
> |
%Table~\ref{tab:datayield} the expected DY contributions |
59 |
> |
%from Table~\ref{tab:ABCD-DY} in order to get a ``purer'' |
60 |
> |
%estimate of the $t\bar{t}$ contribution. The result |
61 |
> |
%of this exercise is {\color{red} xx} events. |
62 |
> |
|
63 |
> |
\clearpage |
64 |
> |
|
65 |
> |
\subsection{Background estimate from the $P_T(\ell\ell)$ method} |
66 |
> |
\label{sec:victoryres} |
67 |
> |
|
68 |
> |
We first use the $P_T(\ell \ell)$ method to predict the number of events |
69 |
> |
in control region A, defined in Sec.~\ref{sec:abcd} as |
70 |
> |
$125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5. |
71 |
> |
We count the number of events in region |
72 |
> |
$A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$ |
73 |
> |
cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$, |
74 |
> |
and find $N_{A'}=6$. To predict the yield in region A we take |
75 |
> |
$N_A = K \cdot K_C \cdot N_{A'} = 10.4 \pm 4.2$ |
76 |
> |
(statistical uncertainty only, assuming Gaussian errors), |
77 |
> |
where we have taken $K = 1.73$ and $K_C = 1$. This yield is in good |
78 |
> |
agreement with the observed yield of 11 events, as shown in |
79 |
> |
Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left). |
80 |
> |
{\color{red} \bf Perform DY estimate for this control region}. |
81 |
> |
|
82 |
> |
Encouraged by the good agreement between predicted and observed yields |
83 |
> |
in the control region, we proceed to perform the $P_T(\ell \ell)$ method |
84 |
> |
in the signal region ${\rm SumJetPt}>300$~GeV. |
85 |
> |
The number of data events in region $D'$, which is defined in |
86 |
> |
Section~\ref{sec:othBG} to be the same as region $D$ but with the |
87 |
> |
$\met/\sqrt{\rm SumJetPt}$ requirement |
88 |
> |
replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement, |
89 |
> |
is $N_{D'}=2$. Thus the BG prediction is |
90 |
> |
$N_D = K \cdot K_C \cdot N_{D'} = 3.07 \pm 2.17$ where $K=1.54 \pm xx$ |
91 |
> |
as derived in Sec.~\ref{sec:victory} and $K_C = 1$. |
92 |
> |
We next subtract off the expected DY contribution of |
93 |
> |
{\color{red} \bf 0.8 $\pm$ 0.8 (update DY estimate)} events, as calculated |
94 |
> |
in Sec.~\ref{sec:othBG}. This gives a predicted yield of |
95 |
> |
$N_D=1.8^{+2.5}_{-1.8}$ events, which is consistent with the observed yield of |
96 |
> |
1 event, as summarized in Table~\ref{tab:victory_signal} and Fig.~\ref{fig:victory} |
97 |
> |
(right). |
98 |
> |
|
99 |
> |
|
100 |
> |
\begin{figure}[hbt] |
101 |
> |
\begin{center} |
102 |
> |
\includegraphics[width=0.48\linewidth]{victory_control_35pb.png} |
103 |
> |
\includegraphics[width=0.48\linewidth]{victory_signal_35pb.png} |
104 |
> |
\caption{\label{fig:victory}\protect Distributions of |
105 |
> |
tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region. |
106 |
> |
We show the oberved distributions in both Monte Carlo and data. |
107 |
> |
We also show the distributions predicted from |
108 |
> |
${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.} |
109 |
> |
\end{center} |
110 |
> |
\end{figure} |
111 |
> |
|
112 |
> |
|
113 |
> |
\begin{table}[hbt] |
114 |
> |
\begin{center} |
115 |
> |
\label{tab:victory_control} |
116 |
> |
\caption{Results of the dilepton $p_{T}$ template method in the control region |
117 |
> |
$125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for |
118 |
> |
the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data |
119 |
> |
and MC. The error on the prediction for data is statistical only, assuming |
120 |
> |
Gaussian errors.} |
121 |
> |
\begin{tabular}{l|c|c|c} |
122 |
> |
\hline |
123 |
> |
& Predicted & Observed & Obs/Pred \\ |
124 |
> |
\hline |
125 |
> |
total SM MC & 7.10 & 8.61 & 1.21 \\ |
126 |
> |
data & 10.38 $\pm$ 4.24 & 11 & 1.06 \\ |
127 |
|
\hline |
128 |
|
\end{tabular} |
129 |
|
\end{center} |
130 |
|
\end{table} |
131 |
|
|
132 |
+ |
\begin{table}[hbt] |
133 |
+ |
\begin{center} |
134 |
+ |
\label{tab:victory_signal} |
135 |
+ |
\caption{Results of the dilepton $p_{T}$ template method in the signal region |
136 |
+ |
$125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for |
137 |
+ |
the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data |
138 |
+ |
and MC. The error on the prediction for data is statistical only, assuming |
139 |
+ |
Gaussian errors.} |
140 |
+ |
\begin{tabular}{l|c|c|c} |
141 |
+ |
\hline |
142 |
+ |
& Predicted & Observed & Obs/Pred \\ |
143 |
+ |
\hline |
144 |
+ |
total SM MC & 0.96 & 1.41 & 1.46 \\ |
145 |
+ |
data & $1.8^{+2.5}_{-1.8}$ & 1 & 0.56 \\ |
146 |
+ |
\hline |
147 |
+ |
\end{tabular} |
148 |
+ |
\end{center} |
149 |
+ |
\end{table} |
150 |
|
|
36 |
– |
There are |
37 |
– |
zero events in the signal region (region D). |
38 |
– |
As mentioned in Section~\ref{sec}, the number |
39 |
– |
of SM events expected events from Monte Carlo is 0.4. |
40 |
– |
The prediction of the ABCD method is 0.5 |
41 |
– |
(see Table~\ref{tab:datayield}. There are no events |
42 |
– |
in the data in region D when $P_T(\ell \ell)$ is |
43 |
– |
substituted for \met; thus the $P_T(\ell \ell)$ |
44 |
– |
method predicts a background of $0^{+x.x}_{-0.0}$ |
45 |
– |
events. As a cross-check, we use the $P_T(\ell \ell)$ |
46 |
– |
method to also predict the number of events in the |
47 |
– |
control region $120<{\rm SumJetPt}<300$ GeV and |
48 |
– |
\met/$\sqrt{\rm SumJetPt} > 8.5$. We predict |
49 |
– |
$5.6^{+x}_{-y}$ events and we observe 4. |
50 |
– |
{\color{red} (We need to make sure that this prediction |
51 |
– |
includes the 1.4 fudge factor).} |
151 |
|
|
152 |
+ |
\subsection{Summary of results} |
153 |
|
To summarize: we see no evidence for an anomalous |
154 |
|
rate of opposite sign isolated dilepton events |
155 |
|
at high \met and high SumJetPt. The extraction of |
156 |
|
quantitative limits on new physics models is discussed |
157 |
< |
in Section~\ref{sec:limits}. |
157 |
> |
in Section~\ref{sec:limit}. |