ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/results.tex (file contents):
Revision 1.1 by claudioc, Fri Oct 29 02:29:40 2010 UTC vs.
Revision 1.12 by benhoob, Thu Nov 11 15:43:50 2010 UTC

# Line 1 | Line 1
1 + \clearpage
2 +
3   \section{Results}
4   \label{sec:results}
5  
4 The data, together with SM expectations is presented
5 in Figure~\ref{fig:abcdData}.  The data yields in the
6 four regions are summarized in Table~\ref{tab:datayield}.
7
8
9
6   \begin{figure}[tbh]
7   \begin{center}
8 < \includegraphics[width=0.75\linewidth]{abcdData.png}
8 > \includegraphics[width=0.75\linewidth]{abcd_35pb.png}
9   \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
10   vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data.  Here we also
11   show our choice of ABCD regions.}
12   \end{center}
13   \end{figure}
14  
15 + The data, together with SM expectations is presented
16 + in Figure~\ref{fig:abcdData}.  We see 1 event in the
17 + signal region (region $D$).  The Standard Model MC
18 + expectation is 1.4 events.
19 +
20 + \subsection{Background estimate from the ABCD method}
21 + \label{sec:abcdres}
22 +
23 + The data yields in the
24 + four regions are summarized in Table~\ref{tab:datayield}.
25 + The prediction of the ABCD method is is given by $A\times C/B$ and
26 + is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming
27 + Gaussian errors). (see Table~\ref{tab:datayield}).  
28  
29   \begin{table}[hbt]
30   \begin{center}
31   \caption{\label{tab:datayield} Data yields in the four
32 < regions of Figure~\ref{fig:abcdData}.  We also show the
33 < SM Monte Carlo expectations.}
34 < \begin{tabular}{|l|c|c|c|c||c|}
35 < \hline
36 <      &A   & B    & C   & D   & AC/D \\ \hline
37 < Data  &3   & 6    & 1   & 0   & $0.5^{+x}_{-y}$ \\
38 < SM MC &2.5 &11.2  & 1.5 & 0.4 & 0.4 \\
32 > regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
33 > by A$\times$C / B.  The quoted uncertainty
34 > on the prediction in data is statistical only, assuming Gaussian errors.
35 > We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
36 > \begin{tabular}{l||c|c|c|c||c}
37 > \hline
38 >         sample   &              A   &              B   &              C   &              D   & A$\times$C / B  \\
39 > \hline
40 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
41 > $t\bar{t}\rightarrow \mathrm{other}$   &           0.15   &           0.85   &           0.09   &           0.04   &           0.02  \\
42 >   $Z^0$ + jets   &           0.00   &           1.16   &           0.08   &           0.08   &           0.00  \\
43 > $W^{\pm}$ + jets   &           0.00   &           0.10   &           0.00   &           0.00   &           0.00  \\
44 >       $W^+W^-$   &           0.19   &           0.29   &           0.02   &           0.07   &           0.02  \\
45 >   $W^{\pm}Z^0$   &           0.03   &           0.04   &           0.01   &           0.01   &           0.00  \\
46 >       $Z^0Z^0$   &           0.00   &           0.03   &           0.00   &           0.00   &           0.00  \\
47 >     single top   &           0.28   &           1.00   &           0.04   &           0.01   &           0.01  \\
48 > \hline
49 >    total SM MC   &           8.61   &          36.54   &           5.05   &           1.41   &           1.19  \\
50 > \hline
51 >           data   &             11   &             36   &              5   &              1   &1.53 $\pm$ 0.86  \\
52 > \hline
53 > \end{tabular}
54 > \end{center}
55 > \end{table}
56 >
57 > %As a cross-check, we can subtract from the yields in
58 > %Table~\ref{tab:datayield} the expected DY contributions
59 > %from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
60 > %estimate of the $t\bar{t}$ contribution.  The result
61 > %of this exercise is {\color{red} xx} events.
62 >
63 > \clearpage
64 >
65 > \subsection{Background estimate from the $P_T(\ell\ell)$ method}
66 > \label{sec:victoryres}
67 >
68 > We first use the $P_T(\ell \ell)$ method to predict the number of events
69 > in control region A, defined in Sec.~\ref{sec:abcd} as
70 > $125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5.
71 > We count the number of events in region
72 > $A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
73 > cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
74 > and find $N_{A'}=6$. To predict the yield in region A we take
75 > $N_A = K \cdot K_C \cdot N_{A'} = 10.4 \pm 4.2$
76 > (statistical uncertainty only, assuming Gaussian errors),
77 > where we have taken $K = 1.73$ and $K_C = 1$. This yield is in good
78 > agreement with the observed yield of 11 events, as shown in
79 > Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left).
80 > {\color{red} \bf Perform DY estimate for this control region}.
81 >
82 > Encouraged by the good agreement between predicted and observed yields
83 > in the control region, we proceed to perform the $P_T(\ell \ell)$ method
84 > in the signal region ${\rm SumJetPt}>300$~GeV.
85 > The number of data events in region $D'$, which is defined in
86 > Section~\ref{sec:othBG} to be the same as region $D$ but with the
87 > $\met/\sqrt{\rm SumJetPt}$ requirement
88 > replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
89 > is $N_{D'}=2$.  Thus the BG prediction is
90 > $N_D = K \cdot K_C \cdot N_{D'} = 3.07 \pm 2.17$ where $K=1.54 \pm xx$
91 > as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
92 > We next subtract off the expected DY contribution of
93 > {\color{red} \bf 0.8 $\pm$ 0.8 (update DY estimate)} events, as calculated
94 > in Sec.~\ref{sec:othBG}. This gives a predicted yield of
95 > $N_D=1.8^{+2.5}_{-1.8}$ events, which is consistent with the observed yield of
96 > 1 event, as summarized in Table~\ref{tab:victory_signal} and Fig.~\ref{fig:victory}
97 > (right).
98 >
99 >
100 > \begin{figure}[hbt]
101 > \begin{center}
102 > \includegraphics[width=0.48\linewidth]{victory_control_35pb.png}
103 > \includegraphics[width=0.48\linewidth]{victory_signal_35pb.png}
104 > \caption{\label{fig:victory}\protect Distributions of
105 > tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
106 > We show the oberved distributions in both Monte Carlo and data.
107 > We also show the distributions predicted from
108 > ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.}
109 > \end{center}
110 > \end{figure}
111 >
112 >
113 > \begin{table}[hbt]
114 > \begin{center}
115 > \label{tab:victory_control}
116 > \caption{Results of the dilepton $p_{T}$ template method in the control region
117 > $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
118 > the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
119 > and MC. The error on the prediction for data is statistical only, assuming
120 > Gaussian errors.}
121 > \begin{tabular}{l|c|c|c}
122 > \hline
123 >              & Predicted           &   Observed &  Obs/Pred \\
124 > \hline
125 > total SM   MC &      7.10           &       8.61 &      1.21 \\
126 >         data &    10.38 $\pm$ 4.24 &         11 &      1.06 \\
127   \hline
128   \end{tabular}
129   \end{center}
130   \end{table}
131  
132 + \begin{table}[hbt]
133 + \begin{center}
134 + \label{tab:victory_signal}
135 + \caption{Results of the dilepton $p_{T}$ template method in the signal region
136 + $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
137 + the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
138 + and MC. The error on the prediction for data is statistical only, assuming
139 + Gaussian errors.}
140 + \begin{tabular}{l|c|c|c}
141 + \hline
142 +              & Predicted                &   Observed &  Obs/Pred \\
143 + \hline
144 + total SM   MC &      0.96                &       1.41 &      1.46 \\
145 +         data &  $1.8^{+2.5}_{-1.8}$     &          1 &      0.56 \\
146 + \hline
147 + \end{tabular}
148 + \end{center}
149 + \end{table}
150  
36 There are
37 zero events in the signal region (region D).
38 As mentioned in Section~\ref{sec}, the number
39 of SM events expected events from Monte Carlo is 0.4.
40 The prediction of the ABCD method is 0.5
41 (see Table~\ref{tab:datayield}.  There are no events
42 in the data in region D when $P_T(\ell \ell)$ is
43 substituted for \met; thus the $P_T(\ell \ell)$
44 method predicts a background of $0^{+x.x}_{-0.0}$
45 events.  As a cross-check, we use the $P_T(\ell \ell)$
46 method to also predict the number of events in the
47 control region $120<{\rm SumJetPt}<300$ GeV and
48 \met/$\sqrt{\rm SumJetPt} > 8.5$.  We predict
49 $5.6^{+x}_{-y}$ events and we observe 4.
50 {\color{red} (We need to make sure that this prediction
51 includes the 1.4 fudge factor).}
151  
152 + \subsection{Summary of results}
153   To summarize: we see no evidence for an anomalous
154   rate of opposite sign isolated dilepton events
155   at high \met and high SumJetPt.  The extraction of
156   quantitative limits on new physics models is discussed
157 < in Section~\ref{sec:limits}.
157 > in Section~\ref{sec:limit}.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines