ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/results.tex (file contents):
Revision 1.12 by benhoob, Thu Nov 11 15:43:50 2010 UTC vs.
Revision 1.13 by benhoob, Thu Nov 11 16:59:39 2010 UTC

# Line 24 | Line 24 | The data yields in the
24   four regions are summarized in Table~\ref{tab:datayield}.
25   The prediction of the ABCD method is is given by $A\times C/B$ and
26   is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming
27 < Gaussian errors). (see Table~\ref{tab:datayield}).  
27 > Gaussian errors), as shown in Table~\ref{tab:datayield}.  
28  
29   \begin{table}[hbt]
30   \begin{center}
# Line 86 | Line 86 | The number of data events in region $D'$
86   Section~\ref{sec:othBG} to be the same as region $D$ but with the
87   $\met/\sqrt{\rm SumJetPt}$ requirement
88   replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
89 < is $N_{D'}=2$.  Thus the BG prediction is
90 < $N_D = K \cdot K_C \cdot N_{D'} = 3.07 \pm 2.17$ where $K=1.54 \pm xx$
91 < as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
89 > is $N_{D'}=2$.  
90   We next subtract off the expected DY contribution of
91 < {\color{red} \bf 0.8 $\pm$ 0.8 (update DY estimate)} events, as calculated
92 < in Sec.~\ref{sec:othBG}. This gives a predicted yield of
93 < $N_D=1.8^{+2.5}_{-1.8}$ events, which is consistent with the observed yield of
91 > {\color{red} \bf $N_{DY}$ = 0.8 $\pm$ 0.8 (update DY estimate)} events, as calculated
92 > in Sec.~\ref{sec:othBG}. The BG prediction is
93 > $N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 1.8^{+2.5}_{-1.8}$ (statistical
94 > uncertainty only, assuming Gaussian errors), where $K=1.54 \pm xx$
95 > as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
96 > This prediction is consistent with the observed yield of
97   1 event, as summarized in Table~\ref{tab:victory_signal} and Fig.~\ref{fig:victory}
98   (right).
99  
# Line 112 | Line 113 | ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in
113  
114   \begin{table}[hbt]
115   \begin{center}
116 < \label{tab:victory_control}
116 < \caption{Results of the dilepton $p_{T}$ template method in the control region
116 > \caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region
117   $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
118   the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
119   and MC. The error on the prediction for data is statistical only, assuming
120   Gaussian errors.}
121 < \begin{tabular}{l|c|c|c}
121 > \begin{tabular}{lccc}
122   \hline
123                & Predicted           &   Observed &  Obs/Pred \\
124   \hline
# Line 131 | Line 131 | total SM   MC &      7.10           &
131  
132   \begin{table}[hbt]
133   \begin{center}
134 < \label{tab:victory_signal}
135 < \caption{Results of the dilepton $p_{T}$ template method in the signal region
136 < $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
134 > \caption{\label{tab:victory_signal}Results of the dilepton $p_{T}$ template method in the signal region
135 > $\mathrm{sumJetPt} > 300$~GeV. The predicted and observed yields for
136   the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
137   and MC. The error on the prediction for data is statistical only, assuming
138   Gaussian errors.}
139 < \begin{tabular}{l|c|c|c}
139 > \begin{tabular}{lccc}
140   \hline
141                & Predicted                &   Observed &  Obs/Pred \\
142   \hline

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines