1 |
+ |
\clearpage |
2 |
+ |
|
3 |
|
\section{Results} |
4 |
|
\label{sec:results} |
5 |
|
|
4 |
– |
%\noindent {\color{red} In the 11 pb everything is very |
5 |
– |
%simple because there are a few zeros. This text is written |
6 |
– |
%for the full dataset under the assumption that some of these |
7 |
– |
%numbers will not be zero anymore.} |
8 |
– |
|
6 |
|
\begin{figure}[tbh] |
7 |
|
\begin{center} |
8 |
< |
\includegraphics[width=0.75\linewidth]{abcdData.png} |
8 |
> |
\includegraphics[width=0.75\linewidth]{abcd_35pb.png} |
9 |
|
\caption{\label{fig:abcdData}\protect Distributions of SumJetPt |
10 |
|
vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data. Here we also |
11 |
|
show our choice of ABCD regions.} |
12 |
|
\end{center} |
13 |
|
\end{figure} |
14 |
|
|
18 |
– |
|
15 |
|
The data, together with SM expectations is presented |
16 |
< |
in Figure~\ref{fig:abcdData}. We see $\color{red} 0$ |
17 |
< |
events in the signal region (region $D$). The Standard Model |
18 |
< |
MC expectation is {\color{red} 0.4} events. |
16 |
> |
in Figure~\ref{fig:abcdData}. We see 1 event in the |
17 |
> |
signal region (region $D$). The Standard Model MC |
18 |
> |
expectation is 1.4 events. |
19 |
|
|
20 |
|
\subsection{Background estimate from the ABCD method} |
21 |
|
\label{sec:abcdres} |
22 |
|
|
23 |
|
The data yields in the |
24 |
|
four regions are summarized in Table~\ref{tab:datayield}. |
25 |
< |
The prediction of the ABCD method is is given by $AC/B$ and |
26 |
< |
is 0.5 events. |
27 |
< |
(see Table~\ref{tab:datayield}. |
25 |
> |
The prediction of the ABCD method is is given by $A\times C/B$ and |
26 |
> |
is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming |
27 |
> |
Gaussian errors), as shown in Table~\ref{tab:datayield}. |
28 |
|
|
29 |
|
\begin{table}[hbt] |
30 |
|
\begin{center} |
31 |
|
\caption{\label{tab:datayield} Data yields in the four |
32 |
< |
regions of Figure~\ref{fig:abcdData}. We also show the |
33 |
< |
SM Monte Carlo expectations.} |
34 |
< |
\begin{tabular}{|l|c|c|c|c||c|} |
35 |
< |
\hline |
36 |
< |
&A & B & C & D & AC/B \\ \hline |
37 |
< |
Data &3 & 6 & 1 & 0 & $0.5^{+x}_{-y}$ \\ |
38 |
< |
SM MC &2.5 &11.2 & 1.5 & 0.4 & 0.4 \\ |
32 |
> |
regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given |
33 |
> |
by A $\times$C / B. The quoted uncertainty |
34 |
> |
on the prediction in data is statistical only, assuming Gaussian errors. |
35 |
> |
We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.} |
36 |
> |
\begin{tabular}{l||c|c|c|c||c} |
37 |
> |
\hline |
38 |
> |
sample & A & B & C & D & A $\times$ C / B \\ |
39 |
> |
\hline |
40 |
> |
|
41 |
> |
$t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 7.96 & 33.07 & 4.81 & 1.20 & 1.16 \\ |
42 |
> |
$t\bar{t}\rightarrow \mathrm{other}$ & 0.15 & 0.85 & 0.09 & 0.04 & 0.02 \\ |
43 |
> |
$Z^0 \rightarrow \ell^{+}\ell^{-}$ & 0.03 & 1.47 & 0.10 & 0.10 & 0.00 \\ |
44 |
> |
$W^{\pm}$ + jets & 0.00 & 0.10 & 0.00 & 0.00 & 0.00 \\ |
45 |
> |
$W^+W^-$ & 0.19 & 0.29 & 0.02 & 0.07 & 0.02 \\ |
46 |
> |
$W^{\pm}Z^0$ & 0.03 & 0.04 & 0.01 & 0.01 & 0.00 \\ |
47 |
> |
$Z^0Z^0$ & 0.00 & 0.03 & 0.00 & 0.00 & 0.00 \\ |
48 |
> |
single top & 0.28 & 1.00 & 0.04 & 0.01 & 0.01 \\ |
49 |
> |
\hline |
50 |
> |
total SM MC & 8.63 & 36.85 & 5.07 & 1.43 & 1.19 \\ |
51 |
> |
\hline |
52 |
> |
data & 11 & 36 & 5 & 1 & $1.53\pm0.86$ \\ |
53 |
|
\hline |
54 |
|
\end{tabular} |
55 |
|
\end{center} |
61 |
|
%estimate of the $t\bar{t}$ contribution. The result |
62 |
|
%of this exercise is {\color{red} xx} events. |
63 |
|
|
64 |
+ |
\clearpage |
65 |
+ |
|
66 |
|
\subsection{Background estimate from the $P_T(\ell\ell)$ method} |
67 |
|
\label{sec:victoryres} |
68 |
|
|
69 |
< |
|
70 |
< |
{\color{red}As mentioned previously, for the 11/pb analysis |
71 |
< |
we use the $K$ factor from data and take $K_{\rm fudge}=1$. |
72 |
< |
This will change for the full dataset. We will also pay |
73 |
< |
more attention to the statistical errors.} |
74 |
< |
|
69 |
> |
We first use the $P_T(\ell \ell)$ method to predict the number of events |
70 |
> |
in control region A, defined in Sec.~\ref{sec:abcd} as |
71 |
> |
$125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5. |
72 |
> |
We count the number of events in region |
73 |
> |
$A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$ |
74 |
> |
cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$, |
75 |
> |
and find $N_{A'}=6$. To predict the yield in region A we take |
76 |
> |
$N_A = K \cdot K_C \cdot N_{A'} = 10.4 \pm 4.2$ |
77 |
> |
(statistical uncertainty only, assuming Gaussian errors), |
78 |
> |
where we have taken $K = 1.73$ and $K_C = 1$. This yield is in good |
79 |
> |
agreement with the observed yield of 11 events, as shown in |
80 |
> |
Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left). |
81 |
> |
|
82 |
> |
Encouraged by the good agreement between predicted and observed yields |
83 |
> |
in the control region, we proceed to perform the $P_T(\ell \ell)$ method |
84 |
> |
in the signal region ${\rm SumJetPt}>300$~GeV. |
85 |
|
The number of data events in region $D'$, which is defined in |
86 |
|
Section~\ref{sec:othBG} to be the same as region $D$ but with the |
87 |
|
$\met/\sqrt{\rm SumJetPt}$ requirement |
88 |
< |
replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement |
89 |
< |
is $N_{D'}=1$. Thus the BG prediction is |
90 |
< |
$N_D = K \cdot K_{\rm fudge} \cdot N_{D'} = 1.5$ |
91 |
< |
where we used $K=1.5 \pm xx$ and $K_{\rm fudge}=1.0 \pm 0.0$. |
92 |
< |
Note that if we were to subtract off from region $D'$ |
93 |
< |
the {\color{red} 0.4 $\pm$ 0.4} DY events estimated from |
94 |
< |
Section~\ref{sec:othBG}, the background |
95 |
< |
prediction would change to $N_D=0.9 \pm xx$ events. |
96 |
< |
{\color{red} When we do this with a real |
97 |
< |
$K_{\rm fudge}$, the fudge factor will be different |
98 |
< |
after the DY subtraction.} |
99 |
< |
|
78 |
< |
As a cross-check, we use the $P_T(\ell \ell)$ |
79 |
< |
method to also predict the number of events in the |
80 |
< |
control region $120<{\rm SumJetPt}<300$ GeV and |
81 |
< |
\met/$\sqrt{\rm SumJetPt} > 8.5$. We predict |
82 |
< |
$5.6^{+x}_{-y}$ events and we observe 4. |
83 |
< |
The results of the $P_T(\ell\ell)$ method are |
84 |
< |
summarized in Figure~\ref{fig:victory}. |
88 |
> |
replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement, |
89 |
> |
is $N_{D'}=2$. |
90 |
> |
We next subtract off the expected DY contribution of |
91 |
> |
$N_{DY}$ = $0.4 \pm 0.4$ events, as calculated |
92 |
> |
in Sec.~\ref{sec:othBG}. The BG prediction is |
93 |
> |
$N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 2.5 \pm 2.2$ (statistical |
94 |
> |
uncertainty only, assuming Gaussian errors), where $K=1.54 \pm xx$ |
95 |
> |
as derived in Sec.~\ref{sec:victory} and $K_C = 1$. |
96 |
> |
This prediction is consistent with the observed yield of |
97 |
> |
1 event, as summarized in Table~\ref{tab:victory_signal} and Fig.~\ref{fig:victory} |
98 |
> |
(right). |
99 |
> |
|
100 |
|
|
101 |
|
\begin{figure}[hbt] |
102 |
|
\begin{center} |
103 |
< |
\includegraphics[width=0.48\linewidth]{victory_control.png} |
104 |
< |
\includegraphics[width=0.48\linewidth]{victory_sig.png} |
103 |
> |
\includegraphics[width=0.48\linewidth]{victory_control_35pb.png} |
104 |
> |
\includegraphics[width=0.48\linewidth]{victory_signal_35pb.png} |
105 |
|
\caption{\label{fig:victory}\protect Distributions of |
106 |
|
tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region. |
107 |
|
We show the oberved distributions in both Monte Carlo and data. |
108 |
|
We also show the distributions predicted from |
109 |
< |
tcMet/$\sqrt{P_T(\ell\ell)}$ in both MC and data.} |
109 |
> |
${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.} |
110 |
|
\end{center} |
111 |
|
\end{figure} |
112 |
|
|
113 |
|
|
114 |
+ |
|
115 |
+ |
\begin{table}[hbt] |
116 |
+ |
\begin{center} |
117 |
+ |
\caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region |
118 |
+ |
$125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for |
119 |
+ |
the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data |
120 |
+ |
and MC. The error on the prediction for data is statistical only, assuming |
121 |
+ |
Gaussian errors.} |
122 |
+ |
\begin{tabular}{lccc} |
123 |
+ |
\hline |
124 |
+ |
& Predicted & Observed & Obs/Pred \\ |
125 |
+ |
\hline |
126 |
+ |
total SM MC & 7.18 & 8.63 & 1.20 \\ |
127 |
+ |
data & 10.38 $\pm$ 4.24 & 11 & 1.06 \\ |
128 |
+ |
\hline |
129 |
+ |
\end{tabular} |
130 |
+ |
\end{center} |
131 |
+ |
\end{table} |
132 |
+ |
|
133 |
+ |
\begin{table}[hbt] |
134 |
+ |
\begin{center} |
135 |
+ |
\caption{\label{tab:victory_signal}Results of the dilepton $p_{T}$ template method in the signal region |
136 |
+ |
$\mathrm{sumJetPt} > 300$~GeV. The predicted and observed yields for |
137 |
+ |
the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data |
138 |
+ |
and MC. The error on the prediction for data is statistical only, assuming |
139 |
+ |
Gaussian errors.} |
140 |
+ |
\begin{tabular}{lccc} |
141 |
+ |
\hline |
142 |
+ |
& Predicted & Observed & Obs/Pred \\ |
143 |
+ |
\hline |
144 |
+ |
total SM MC & 1.03 & 1.43 & 1.38 \\ |
145 |
+ |
data & $2.53 \pm 2.25$ & 1 & 0.40 \\ |
146 |
+ |
\hline |
147 |
+ |
\end{tabular} |
148 |
+ |
\end{center} |
149 |
+ |
\end{table} |
150 |
+ |
|
151 |
+ |
|
152 |
|
\subsection{Summary of results} |
153 |
|
To summarize: we see no evidence for an anomalous |
154 |
|
rate of opposite sign isolated dilepton events |
155 |
|
at high \met and high SumJetPt. The extraction of |
156 |
|
quantitative limits on new physics models is discussed |
157 |
< |
in Section~\ref{sec:limits}. |
157 |
> |
in Section~\ref{sec:limit}. |