ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/results.tex (file contents):
Revision 1.9 by benhoob, Thu Nov 11 09:20:56 2010 UTC vs.
Revision 1.14 by benhoob, Fri Nov 12 22:06:41 2010 UTC

# Line 23 | Line 23 | expectation is 1.4 events.
23   The data yields in the
24   four regions are summarized in Table~\ref{tab:datayield}.
25   The prediction of the ABCD method is is given by $A\times C/B$ and
26 < is 1.5 events. (see Table~\ref{tab:datayield}.  
26 > is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming
27 > Gaussian errors), as shown in Table~\ref{tab:datayield}.  
28  
29   \begin{table}[hbt]
30   \begin{center}
31   \caption{\label{tab:datayield} Data yields in the four
32   regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
33 < by A$\times$C / B.  The quoted uncertainty
33 > by A $\times$C / B.  The quoted uncertainty
34   on the prediction in data is statistical only, assuming Gaussian errors.
35   We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
36   \begin{tabular}{l||c|c|c|c||c}
37   \hline
38 <         sample   &              A   &              B   &              C   &              D   & A$\times$C / B  \\
38 >         sample                          &              A   &              B   &              C   &              D   & A $\times$ C / B  \\
39   \hline
40 +
41   $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
42 < $t\bar{t}\rightarrow \mathrm{other}$   &           0.15   &           0.85   &           0.09   &           0.04   &           0.02  \\
43 <   $Z^0$ + jets   &           0.00   &           1.16   &           0.08   &           0.08   &           0.00  \\
44 < $W^{\pm}$ + jets   &           0.00   &           0.10   &           0.00   &           0.00   &           0.00  \\
45 <       $W^+W^-$   &           0.19   &           0.29   &           0.02   &           0.07   &           0.02  \\
46 <   $W^{\pm}Z^0$   &           0.03   &           0.04   &           0.01   &           0.01   &           0.00  \\
47 <       $Z^0Z^0$   &           0.00   &           0.03   &           0.00   &           0.00   &           0.00  \\
48 <     single top   &           0.28   &           1.00   &           0.04   &           0.01   &           0.01  \\
42 > $t\bar{t}\rightarrow \mathrm{other}$     &           0.15   &           0.85   &           0.09   &           0.04   &           0.02  \\
43 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &           0.03   &           1.47   &           0.10   &           0.10   &           0.00  \\
44 > $W^{\pm}$ + jets                         &           0.00   &           0.10   &           0.00   &           0.00   &           0.00  \\
45 >       $W^+W^-$                          &           0.19   &           0.29   &           0.02   &           0.07   &           0.02  \\
46 >   $W^{\pm}Z^0$                          &           0.03   &           0.04   &           0.01   &           0.01   &           0.00  \\
47 >       $Z^0Z^0$                          &           0.00   &           0.03   &           0.00   &           0.00   &           0.00  \\
48 >     single top                          &           0.28   &           1.00   &           0.04   &           0.01   &           0.01  \\
49   \hline
50 <    total SM MC   &           8.61   &          36.54   &           5.05   &           1.41   &           1.19  \\
50 >    total SM MC                          &           8.63   &          36.85   &           5.07   &           1.43   &           1.19  \\
51   \hline
52 <           data   &             11   &             36   &              5   &              1   &1.53 $\pm$ 0.86  \\
52 >           data                          &             11   &             36   &              5   &              1   &  $1.53\pm0.86$  \\
53   \hline
54   \end{tabular}
55   \end{center}
# Line 59 | Line 61 | $W^{\pm}$ + jets   &           0.00   &
61   %estimate of the $t\bar{t}$ contribution.  The result
62   %of this exercise is {\color{red} xx} events.
63  
64 + \clearpage
65 +
66   \subsection{Background estimate from the $P_T(\ell\ell)$ method}
67   \label{sec:victoryres}
68  
69 + We first use the $P_T(\ell \ell)$ method to predict the number of events
70 + in control region A, defined in Sec.~\ref{sec:abcd} as
71 + $125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5.
72 + We count the number of events in region
73 + $A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
74 + cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
75 + and find $N_{A'}=6$. To predict the yield in region A we take
76 + $N_A = K \cdot K_C \cdot N_{A'} = 10.4 \pm 4.2$
77 + (statistical uncertainty only, assuming Gaussian errors),
78 + where we have taken $K = 1.73$ and $K_C = 1$. This yield is in good
79 + agreement with the observed yield of 11 events, as shown in
80 + Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left).
81 +
82 + Encouraged by the good agreement between predicted and observed yields
83 + in the control region, we proceed to perform the $P_T(\ell \ell)$ method
84 + in the signal region ${\rm SumJetPt}>300$~GeV.
85   The number of data events in region $D'$, which is defined in
86   Section~\ref{sec:othBG} to be the same as region $D$ but with the
87   $\met/\sqrt{\rm SumJetPt}$ requirement
88 < replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
89 < is $N_{D'}=2$.  Thus the BG prediction is
90 < $N_D = K \cdot K_C \cdot N_{D'} = 1.5$
91 < where $K=1.5 \pm xx$ as derived in Sec.~\ref{sec:victory} and
92 < $K_C = 1$.
93 < Note that if we were to subtract off from region $D'$
94 < the {\color{red} 0.8 $\pm$ 0.8} DY events estimated from
95 < Section~\ref{sec:othBG}, the background
96 < prediction would change to $N_D=1.8 \pm xx$ events.
97 <
98 < %%%TO BE REPLACED
99 < %{\color{red}As mentioned previously, for the 11/pb analysis
80 < %we use the $K$ factor from data and take $K=1$.
81 < %This will change for the full dataset.  We will also pay
82 < %more attention to the statistical errors.}
83 <
84 < %The number of data events in region $D'$, which is defined in
85 < %Section~\ref{sec:othBG} to be the same as region $D$ but with the
86 < %$\met/\sqrt{\rm SumJetPt}$ requirement
87 < %replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
88 < %is $N_{D'}=1$.  Thus the BG prediction is
89 < %$N_D = K \cdot K_{\rm fudge} \cdot N_{D'} = 1.5$
90 < %where we used $K=1.5 \pm xx$ and $K_{\rm fudge}=1.0 \pm 0.0$.
91 < %Note that if we were to subtract off from region $D'$
92 < %the {\color{red} 0.4 $\pm$ 0.4} DY events estimated from
93 < %Section~\ref{sec:othBG}, the background
94 < %prediction would change to $N_D=0.9 \pm xx$ events.
95 < %{\color{red} When we do this with a real
96 < %$K_{\rm fudge}$, the fudge factor will be different
97 < %after the DY subtraction.}
98 <
99 < As a cross-check, we use the $P_T(\ell \ell)$
100 < method to also predict the number of events in the
101 < control region $125<{\rm SumJetPt}<300$ GeV and
102 < \met/$\sqrt{\rm SumJetPt} > 8.5$.  We predict
103 < $5.6^{+x}_{-y}$ events and we observe 4.
104 < The results of the $P_T(\ell\ell)$ method are
105 < summarized in Figure~\ref{fig:victory}.
88 > replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
89 > is $N_{D'}=2$.  
90 > We next subtract off the expected DY contribution of
91 > $N_{DY}$ = $0.4 \pm 0.4$ events, as calculated
92 > in Sec.~\ref{sec:othBG}. The BG prediction is
93 > $N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 2.5 \pm 2.2$ (statistical
94 > uncertainty only, assuming Gaussian errors), where $K=1.54 \pm xx$
95 > as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
96 > This prediction is consistent with the observed yield of
97 > 1 event, as summarized in Table~\ref{tab:victory_signal} and Fig.~\ref{fig:victory}
98 > (right).
99 >
100  
101   \begin{figure}[hbt]
102   \begin{center}
# Line 117 | Line 111 | ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in
111   \end{figure}
112  
113  
114 +
115   \begin{table}[hbt]
116   \begin{center}
117 < \label{tab:victory_control}
123 < \caption{Results of the dilepton $p_{T}$ template method in the control region
117 > \caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region
118   $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
119   the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
120   and MC. The error on the prediction for data is statistical only, assuming
121   Gaussian errors.}
122 < \begin{tabular}{l|c|c|c}
122 > \begin{tabular}{lccc}
123   \hline
124                & Predicted           &   Observed &  Obs/Pred \\
125   \hline
126 < total SM   MC &      7.10           &       8.61 &      1.21 \\
126 > total SM   MC &      7.18           &       8.63 &      1.20 \\
127           data &    10.38 $\pm$ 4.24 &         11 &      1.06 \\
128   \hline
129   \end{tabular}
# Line 138 | Line 132 | total SM   MC &      7.10           &
132  
133   \begin{table}[hbt]
134   \begin{center}
135 < \label{tab:victory_control}
136 < \caption{Results of the dilepton $p_{T}$ template method in the signal region
143 < $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
135 > \caption{\label{tab:victory_signal}Results of the dilepton $p_{T}$ template method in the signal region
136 > $\mathrm{sumJetPt} > 300$~GeV. The predicted and observed yields for
137   the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
138   and MC. The error on the prediction for data is statistical only, assuming
139   Gaussian errors.}
140 < \begin{tabular}{l|c|c|c}
140 > \begin{tabular}{lccc}
141   \hline
142 <              & Predicted           &   Observed &  Obs/Pred \\
142 >              & Predicted                &   Observed &  Obs/Pred \\
143   \hline
144 < total SM   MC &      0.96           &       1.41 &      1.46 \\
145 <         data &     3.07 $\pm$ 2.17 &          1 &      0.33 \\
144 > total SM   MC &      1.03                &       1.43 &      1.38 \\
145 >         data &    $2.53 \pm 2.25$       &          1 &      0.40 \\
146   \hline
147   \end{tabular}
148   \end{center}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines