ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/results.tex (file contents):
Revision 1.12 by benhoob, Thu Nov 11 15:43:50 2010 UTC vs.
Revision 1.15 by benhoob, Sat Nov 13 07:48:09 2010 UTC

# Line 24 | Line 24 | The data yields in the
24   four regions are summarized in Table~\ref{tab:datayield}.
25   The prediction of the ABCD method is is given by $A\times C/B$ and
26   is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming
27 < Gaussian errors). (see Table~\ref{tab:datayield}).  
27 > Gaussian errors), as shown in Table~\ref{tab:datayield}.  
28  
29   \begin{table}[hbt]
30   \begin{center}
31   \caption{\label{tab:datayield} Data yields in the four
32   regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
33 < by A$\times$C / B.  The quoted uncertainty
33 > by A $\times$C / B.  The quoted uncertainty
34   on the prediction in data is statistical only, assuming Gaussian errors.
35   We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
36   \begin{tabular}{l||c|c|c|c||c}
37   \hline
38 <         sample   &              A   &              B   &              C   &              D   & A$\times$C / B  \\
38 >         sample                          &              A   &              B   &              C   &              D   & A $\times$ C / B  \\
39   \hline
40 +
41   $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
42 < $t\bar{t}\rightarrow \mathrm{other}$   &           0.15   &           0.85   &           0.09   &           0.04   &           0.02  \\
43 <   $Z^0$ + jets   &           0.00   &           1.16   &           0.08   &           0.08   &           0.00  \\
44 < $W^{\pm}$ + jets   &           0.00   &           0.10   &           0.00   &           0.00   &           0.00  \\
45 <       $W^+W^-$   &           0.19   &           0.29   &           0.02   &           0.07   &           0.02  \\
46 <   $W^{\pm}Z^0$   &           0.03   &           0.04   &           0.01   &           0.01   &           0.00  \\
47 <       $Z^0Z^0$   &           0.00   &           0.03   &           0.00   &           0.00   &           0.00  \\
48 <     single top   &           0.28   &           1.00   &           0.04   &           0.01   &           0.01  \\
42 > $t\bar{t}\rightarrow \mathrm{other}$     &           0.15   &           0.85   &           0.09   &           0.04   &           0.02  \\
43 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &           0.03   &           1.47   &           0.10   &           0.10   &           0.00  \\
44 > $W^{\pm}$ + jets                         &           0.00   &           0.10   &           0.00   &           0.00   &           0.00  \\
45 >       $W^+W^-$                          &           0.19   &           0.29   &           0.02   &           0.07   &           0.02  \\
46 >   $W^{\pm}Z^0$                          &           0.03   &           0.04   &           0.01   &           0.01   &           0.00  \\
47 >       $Z^0Z^0$                          &           0.00   &           0.03   &           0.00   &           0.00   &           0.00  \\
48 >     single top                          &           0.28   &           1.00   &           0.04   &           0.01   &           0.01  \\
49   \hline
50 <    total SM MC   &           8.61   &          36.54   &           5.05   &           1.41   &           1.19  \\
50 >    total SM MC                          &           8.63   &          36.85   &           5.07   &           1.43   &           1.19  \\
51   \hline
52 <           data   &             11   &             36   &              5   &              1   &1.53 $\pm$ 0.86  \\
52 >           data                          &             11   &             36   &              5   &              1   &  $1.53\pm0.86$  \\
53   \hline
54   \end{tabular}
55   \end{center}
# Line 71 | Line 72 | $125<{\rm SumJetPt}>300$~GeV and $\met/\
72   We count the number of events in region
73   $A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
74   cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
75 < and find $N_{A'}=6$. To predict the yield in region A we take
76 < $N_A = K \cdot K_C \cdot N_{A'} = 10.4 \pm 4.2$
75 > and find $N_{A'}=6$. We subtract off the expected DY contribution in this region
76 > $N_{DY} = 2.5 \pm 2.4$, derived in Sec.~\ref{sec:othBG}.
77 > To predict the yield in region A we take
78 > $N_A = K \cdot K_C \cdot ( N_{A'} - N_{DY} ) = 6.1 \pm 6.0$
79   (statistical uncertainty only, assuming Gaussian errors),
80 < where we have taken $K = 1.73$ and $K_C = 1$. This yield is in good
81 < agreement with the observed yield of 11 events, as shown in
80 > where we have taken $K = 1.73$ and $K_C = 1$. This yield is consistent
81 > with the observed yield of 11 events, as shown in
82   Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left).
80 {\color{red} \bf Perform DY estimate for this control region}.
83  
84   Encouraged by the good agreement between predicted and observed yields
85   in the control region, we proceed to perform the $P_T(\ell \ell)$ method
# Line 86 | Line 88 | The number of data events in region $D'$
88   Section~\ref{sec:othBG} to be the same as region $D$ but with the
89   $\met/\sqrt{\rm SumJetPt}$ requirement
90   replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
91 < is $N_{D'}=2$.  Thus the BG prediction is
90 < $N_D = K \cdot K_C \cdot N_{D'} = 3.07 \pm 2.17$ where $K=1.54 \pm xx$
91 < as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
91 > is $N_{D'}=2$.  
92   We next subtract off the expected DY contribution of
93 < {\color{red} \bf 0.8 $\pm$ 0.8 (update DY estimate)} events, as calculated
94 < in Sec.~\ref{sec:othBG}. This gives a predicted yield of
95 < $N_D=1.8^{+2.5}_{-1.8}$ events, which is consistent with the observed yield of
93 > $N_{DY}$ = $0.4 \pm 0.4$ events, as calculated
94 > in Sec.~\ref{sec:othBG}. The BG prediction is
95 > $N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 2.5 \pm 2.2$ (statistical
96 > uncertainty only, assuming Gaussian errors), where $K=1.54 \pm xx$
97 > as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
98 > This prediction is consistent with the observed yield of
99   1 event, as summarized in Table~\ref{tab:victory_signal} and Fig.~\ref{fig:victory}
100   (right).
101  
# Line 110 | Line 113 | ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in
113   \end{figure}
114  
115  
116 +
117   \begin{table}[hbt]
118   \begin{center}
119 < \label{tab:victory_control}
116 < \caption{Results of the dilepton $p_{T}$ template method in the control region
119 > \caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region
120   $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
121   the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
122   and MC. The error on the prediction for data is statistical only, assuming
123   Gaussian errors.}
124 < \begin{tabular}{l|c|c|c}
124 > \begin{tabular}{lccc}
125   \hline
126                & Predicted           &   Observed &  Obs/Pred \\
127   \hline
128 < total SM   MC &      7.10           &       8.61 &      1.21 \\
129 <         data &    10.38 $\pm$ 4.24 &         11 &      1.06 \\
128 > total SM   MC &      7.18           &       8.63 &      1.20 \\
129 >         data &    $6.06 \pm 5.95$  &         11 &      1.06 \\
130   \hline
131   \end{tabular}
132   \end{center}
# Line 131 | Line 134 | total SM   MC &      7.10           &
134  
135   \begin{table}[hbt]
136   \begin{center}
137 < \label{tab:victory_signal}
138 < \caption{Results of the dilepton $p_{T}$ template method in the signal region
136 < $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
137 > \caption{\label{tab:victory_signal}Results of the dilepton $p_{T}$ template method in the signal region
138 > $\mathrm{sumJetPt} > 300$~GeV. The predicted and observed yields for
139   the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
140   and MC. The error on the prediction for data is statistical only, assuming
141   Gaussian errors.}
142 < \begin{tabular}{l|c|c|c}
142 > \begin{tabular}{lccc}
143   \hline
144                & Predicted                &   Observed &  Obs/Pred \\
145   \hline
146 < total SM   MC &      0.96                &       1.41 &      1.46 \\
147 <         data &  $1.8^{+2.5}_{-1.8}$     &          1 &      0.56 \\
146 > total SM   MC &      1.03                &       1.43 &      1.38 \\
147 >         data &    $2.53 \pm 2.25$       &          1 &      0.40 \\
148   \hline
149   \end{tabular}
150   \end{center}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines