ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/results.tex (file contents):
Revision 1.15 by benhoob, Sat Nov 13 07:48:09 2010 UTC vs.
Revision 1.20 by benhoob, Mon Nov 15 10:30:52 2010 UTC

# Line 14 | Line 14 | show our choice of ABCD regions.}
14  
15   The data, together with SM expectations is presented
16   in Figure~\ref{fig:abcdData}.  We see 1 event in the
17 < signal region (region $D$).  The Standard Model MC
18 < expectation is 1.4 events.
17 > signal region (region $D$).  For more information about
18 > this one candidate events, see Appendix~\ref{sec:cand}.
19 > The Standard Model MC expectation is 1.4 events.
20  
21   \subsection{Background estimate from the ABCD method}
22   \label{sec:abcdres}
# Line 23 | Line 24 | expectation is 1.4 events.
24   The data yields in the
25   four regions are summarized in Table~\ref{tab:datayield}.
26   The prediction of the ABCD method is is given by $A\times C/B$ and
27 < is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming
27 < Gaussian errors), as shown in Table~\ref{tab:datayield}.  
27 > is $1.5 \pm 0.9(stat) \pm 0.2(syst)$ events, as shown in Table~\ref{tab:datayield}.  
28  
29   \begin{table}[hbt]
30   \begin{center}
# Line 49 | Line 49 | $W^{\pm}$ + jets
49   \hline
50      total SM MC                          &           8.63   &          36.85   &           5.07   &           1.43   &           1.19  \\
51   \hline
52 <           data                          &             11   &             36   &              5   &              1   &  $1.53\pm0.86$  \\
52 >           data                          &             11   &             36   &              5   &              1   &  $1.53 \pm 0.86$  \\
53   \hline
54   \end{tabular}
55   \end{center}
# Line 68 | Line 68 | $W^{\pm}$ + jets
68  
69   We first use the $P_T(\ell \ell)$ method to predict the number of events
70   in control region A, defined in Sec.~\ref{sec:abcd} as
71 < $125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5.
71 > $125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5~GeV$^{1/2}$.
72   We count the number of events in region
73   $A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
74   cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
# Line 117 | Line 117 | ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in
117   \begin{table}[hbt]
118   \begin{center}
119   \caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region
120 < $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
120 > $125 < \mathrm{sumJetPt} < 300$~GeV$^{1/2}$. The predicted and observed yields for
121   the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
122   and MC. The error on the prediction for data is statistical only, assuming
123   Gaussian errors.}
# Line 126 | Line 126 | Gaussian errors.}
126                & Predicted           &   Observed &  Obs/Pred \\
127   \hline
128   total SM   MC &      7.18           &       8.63 &      1.20 \\
129 <         data &    $6.06 \pm 5.95$  &         11 &      1.06 \\
129 >         data &    $6.06 \pm 5.95$  &         11 &      1.82 \\
130   \hline
131   \end{tabular}
132   \end{center}
# Line 135 | Line 135 | total SM   MC &      7.18           &
135   \begin{table}[hbt]
136   \begin{center}
137   \caption{\label{tab:victory_signal}Results of the dilepton $p_{T}$ template method in the signal region
138 < $\mathrm{sumJetPt} > 300$~GeV. The predicted and observed yields for
138 > $\mathrm{sumJetPt} > 300$~GeV$^{1/2}$. The predicted and observed yields for
139   the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
140   and MC. The error on the prediction for data is statistical only, assuming
141   Gaussian errors.}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines