14 |
|
|
15 |
|
The data, together with SM expectations is presented |
16 |
|
in Figure~\ref{fig:abcdData}. We see 1 event in the |
17 |
< |
signal region (region $D$). The Standard Model MC |
18 |
< |
expectation is 1.4 events. |
17 |
> |
signal region (region $D$). For more information about |
18 |
> |
this one candidate events, see Appendix~\ref{sec:cand}. |
19 |
> |
The Standard Model MC expectation is 1.4 events. |
20 |
|
|
21 |
|
\subsection{Background estimate from the ABCD method} |
22 |
|
\label{sec:abcdres} |
31 |
|
\begin{center} |
32 |
|
\caption{\label{tab:datayield} Data yields in the four |
33 |
|
regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given |
34 |
< |
by A$\times$C / B. The quoted uncertainty |
34 |
> |
by A $\times$C / B. The quoted uncertainty |
35 |
|
on the prediction in data is statistical only, assuming Gaussian errors. |
36 |
|
We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.} |
37 |
|
\begin{tabular}{l||c|c|c|c||c} |
38 |
|
\hline |
39 |
< |
sample & A & B & C & D & A$\times$C / B \\ |
39 |
> |
sample & A & B & C & D & A $\times$ C / B \\ |
40 |
|
\hline |
41 |
+ |
|
42 |
|
$t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 7.96 & 33.07 & 4.81 & 1.20 & 1.16 \\ |
43 |
< |
$t\bar{t}\rightarrow \mathrm{other}$ & 0.15 & 0.85 & 0.09 & 0.04 & 0.02 \\ |
44 |
< |
$Z^0$ + jets & 0.00 & 1.16 & 0.08 & 0.08 & 0.00 \\ |
45 |
< |
$W^{\pm}$ + jets & 0.00 & 0.10 & 0.00 & 0.00 & 0.00 \\ |
46 |
< |
$W^+W^-$ & 0.19 & 0.29 & 0.02 & 0.07 & 0.02 \\ |
47 |
< |
$W^{\pm}Z^0$ & 0.03 & 0.04 & 0.01 & 0.01 & 0.00 \\ |
48 |
< |
$Z^0Z^0$ & 0.00 & 0.03 & 0.00 & 0.00 & 0.00 \\ |
49 |
< |
single top & 0.28 & 1.00 & 0.04 & 0.01 & 0.01 \\ |
43 |
> |
$t\bar{t}\rightarrow \mathrm{other}$ & 0.15 & 0.85 & 0.09 & 0.04 & 0.02 \\ |
44 |
> |
$Z^0 \rightarrow \ell^{+}\ell^{-}$ & 0.03 & 1.47 & 0.10 & 0.10 & 0.00 \\ |
45 |
> |
$W^{\pm}$ + jets & 0.00 & 0.10 & 0.00 & 0.00 & 0.00 \\ |
46 |
> |
$W^+W^-$ & 0.19 & 0.29 & 0.02 & 0.07 & 0.02 \\ |
47 |
> |
$W^{\pm}Z^0$ & 0.03 & 0.04 & 0.01 & 0.01 & 0.00 \\ |
48 |
> |
$Z^0Z^0$ & 0.00 & 0.03 & 0.00 & 0.00 & 0.00 \\ |
49 |
> |
single top & 0.28 & 1.00 & 0.04 & 0.01 & 0.01 \\ |
50 |
|
\hline |
51 |
< |
total SM MC & 8.61 & 36.54 & 5.05 & 1.41 & 1.19 \\ |
51 |
> |
total SM MC & 8.63 & 36.85 & 5.07 & 1.43 & 1.19 \\ |
52 |
|
\hline |
53 |
< |
data & 11 & 36 & 5 & 1 &1.53 $\pm$ 0.86 \\ |
53 |
> |
data & 11 & 36 & 5 & 1 & $1.53\pm0.86$ \\ |
54 |
|
\hline |
55 |
|
\end{tabular} |
56 |
|
\end{center} |
73 |
|
We count the number of events in region |
74 |
|
$A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$ |
75 |
|
cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$, |
76 |
< |
and find $N_{A'}=6$. To predict the yield in region A we take |
77 |
< |
$N_A = K \cdot K_C \cdot N_{A'} = 10.4 \pm 4.2$ |
76 |
> |
and find $N_{A'}=6$. We subtract off the expected DY contribution in this region |
77 |
> |
$N_{DY} = 2.5 \pm 2.4$, derived in Sec.~\ref{sec:othBG}. |
78 |
> |
To predict the yield in region A we take |
79 |
> |
$N_A = K \cdot K_C \cdot ( N_{A'} - N_{DY} ) = 6.1 \pm 6.0$ |
80 |
|
(statistical uncertainty only, assuming Gaussian errors), |
81 |
< |
where we have taken $K = 1.73$ and $K_C = 1$. This yield is in good |
82 |
< |
agreement with the observed yield of 11 events, as shown in |
81 |
> |
where we have taken $K = 1.73$ and $K_C = 1$. This yield is consistent |
82 |
> |
with the observed yield of 11 events, as shown in |
83 |
|
Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left). |
80 |
– |
{\color{red} \bf Perform DY estimate for this control region}. |
84 |
|
|
85 |
|
Encouraged by the good agreement between predicted and observed yields |
86 |
|
in the control region, we proceed to perform the $P_T(\ell \ell)$ method |
91 |
|
replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement, |
92 |
|
is $N_{D'}=2$. |
93 |
|
We next subtract off the expected DY contribution of |
94 |
< |
{\color{red} \bf $N_{DY}$ = 0.8 $\pm$ 0.8 (update DY estimate)} events, as calculated |
94 |
> |
$N_{DY}$ = $0.4 \pm 0.4$ events, as calculated |
95 |
|
in Sec.~\ref{sec:othBG}. The BG prediction is |
96 |
< |
$N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 1.8^{+2.5}_{-1.8}$ (statistical |
96 |
> |
$N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 2.5 \pm 2.2$ (statistical |
97 |
|
uncertainty only, assuming Gaussian errors), where $K=1.54 \pm xx$ |
98 |
|
as derived in Sec.~\ref{sec:victory} and $K_C = 1$. |
99 |
|
This prediction is consistent with the observed yield of |
114 |
|
\end{figure} |
115 |
|
|
116 |
|
|
117 |
+ |
|
118 |
|
\begin{table}[hbt] |
119 |
|
\begin{center} |
120 |
|
\caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region |
126 |
|
\hline |
127 |
|
& Predicted & Observed & Obs/Pred \\ |
128 |
|
\hline |
129 |
< |
total SM MC & 7.10 & 8.61 & 1.21 \\ |
130 |
< |
data & 10.38 $\pm$ 4.24 & 11 & 1.06 \\ |
129 |
> |
total SM MC & 7.18 & 8.63 & 1.20 \\ |
130 |
> |
data & $6.06 \pm 5.95$ & 11 & 1.82 \\ |
131 |
|
\hline |
132 |
|
\end{tabular} |
133 |
|
\end{center} |
144 |
|
\hline |
145 |
|
& Predicted & Observed & Obs/Pred \\ |
146 |
|
\hline |
147 |
< |
total SM MC & 0.96 & 1.41 & 1.46 \\ |
148 |
< |
data & $1.8^{+2.5}_{-1.8}$ & 1 & 0.56 \\ |
147 |
> |
total SM MC & 1.03 & 1.43 & 1.38 \\ |
148 |
> |
data & $2.53 \pm 2.25$ & 1 & 0.40 \\ |
149 |
|
\hline |
150 |
|
\end{tabular} |
151 |
|
\end{center} |