ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/results.tex (file contents):
Revision 1.2 by claudioc, Fri Nov 5 23:07:43 2010 UTC vs.
Revision 1.17 by claudioc, Sun Nov 14 13:47:56 2010 UTC

# Line 1 | Line 1
1 + \clearpage
2 +
3   \section{Results}
4   \label{sec:results}
5  
4 \noindent {\color{red} In the 11 pb everything is very
5 simple because there are a few zeros.  This text is written
6 for the full dataset under the assumption that some of these
7 numbers will not be zero anymore.}
8
6   \begin{figure}[tbh]
7   \begin{center}
8 < \includegraphics[width=0.75\linewidth]{abcdData.png}
8 > \includegraphics[width=0.75\linewidth]{abcd_35pb.png}
9   \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
10   vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data.  Here we also
11   show our choice of ABCD regions.}
12   \end{center}
13   \end{figure}
14  
18
15   The data, together with SM expectations is presented
16 < in Figure~\ref{fig:abcdData}.  We see $\color{red} 0$
17 < events in the signal region (region $D$).  The Standard Model
18 < MC expectation is {\color{red} 0.4} events.
16 > in Figure~\ref{fig:abcdData}.  We see 1 event in the
17 > signal region (region $D$).  For more information about
18 > this one candidate events, see Appendix~\ref{sec:cand}.
19 > The Standard Model MC expectation is 1.4 events.
20  
21   \subsection{Background estimate from the ABCD method}
22   \label{sec:abcdres}
23  
24   The data yields in the
25   four regions are summarized in Table~\ref{tab:datayield}.
26 < The prediction of the ABCD method is is given by $AC/B$ and
27 < is 0.5 events.
28 < (see Table~\ref{tab:datayield}.  
26 > The prediction of the ABCD method is is given by $A\times C/B$ and
27 > is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming
28 > Gaussian errors), as shown in Table~\ref{tab:datayield}.  
29  
30   \begin{table}[hbt]
31   \begin{center}
32   \caption{\label{tab:datayield} Data yields in the four
33 < regions of Figure~\ref{fig:abcdData}.  We also show the
34 < SM Monte Carlo expectations.}
35 < \begin{tabular}{|l|c|c|c|c||c|}
36 < \hline
37 <      &A   & B    & C   & D   & AC/B \\ \hline
38 < Data  &3   & 6    & 1   & 0   & $0.5^{+x}_{-y}$ \\
39 < SM MC &2.5 &11.2  & 1.5 & 0.4 & 0.4 \\
33 > regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
34 > by A $\times$C / B.  The quoted uncertainty
35 > on the prediction in data is statistical only, assuming Gaussian errors.
36 > We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
37 > \begin{tabular}{l||c|c|c|c||c}
38 > \hline
39 >         sample                          &              A   &              B   &              C   &              D   & A $\times$ C / B  \\
40 > \hline
41 >
42 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
43 > $t\bar{t}\rightarrow \mathrm{other}$     &           0.15   &           0.85   &           0.09   &           0.04   &           0.02  \\
44 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &           0.03   &           1.47   &           0.10   &           0.10   &           0.00  \\
45 > $W^{\pm}$ + jets                         &           0.00   &           0.10   &           0.00   &           0.00   &           0.00  \\
46 >       $W^+W^-$                          &           0.19   &           0.29   &           0.02   &           0.07   &           0.02  \\
47 >   $W^{\pm}Z^0$                          &           0.03   &           0.04   &           0.01   &           0.01   &           0.00  \\
48 >       $Z^0Z^0$                          &           0.00   &           0.03   &           0.00   &           0.00   &           0.00  \\
49 >     single top                          &           0.28   &           1.00   &           0.04   &           0.01   &           0.01  \\
50 > \hline
51 >    total SM MC                          &           8.63   &          36.85   &           5.07   &           1.43   &           1.19  \\
52 > \hline
53 >           data                          &             11   &             36   &              5   &              1   &  $1.53\pm0.86$  \\
54   \hline
55   \end{tabular}
56   \end{center}
57   \end{table}
58  
59 < As a cross-check, we can subtract from the yields in
60 < Table~\ref{tab:datayield} the expected DY contributions
61 < from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
62 < estimate of the $t\bar{t}$ contribution.  The result
63 < of this exercise is {\color{red} xx} events.
59 > %As a cross-check, we can subtract from the yields in
60 > %Table~\ref{tab:datayield} the expected DY contributions
61 > %from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
62 > %estimate of the $t\bar{t}$ contribution.  The result
63 > %of this exercise is {\color{red} xx} events.
64 >
65 > \clearpage
66  
67   \subsection{Background estimate from the $P_T(\ell\ell)$ method}
68   \label{sec:victoryres}
69  
70 <
71 <
70 > We first use the $P_T(\ell \ell)$ method to predict the number of events
71 > in control region A, defined in Sec.~\ref{sec:abcd} as
72 > $125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5.
73 > We count the number of events in region
74 > $A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
75 > cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
76 > and find $N_{A'}=6$. We subtract off the expected DY contribution in this region
77 > $N_{DY} = 2.5 \pm 2.4$, derived in Sec.~\ref{sec:othBG}.
78 > To predict the yield in region A we take
79 > $N_A = K \cdot K_C \cdot ( N_{A'} - N_{DY} ) = 6.1 \pm 6.0$
80 > (statistical uncertainty only, assuming Gaussian errors),
81 > where we have taken $K = 1.73$ and $K_C = 1$. This yield is consistent
82 > with the observed yield of 11 events, as shown in
83 > Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left).
84 >
85 > Encouraged by the good agreement between predicted and observed yields
86 > in the control region, we proceed to perform the $P_T(\ell \ell)$ method
87 > in the signal region ${\rm SumJetPt}>300$~GeV.
88   The number of data events in region $D'$, which is defined in
89   Section~\ref{sec:othBG} to be the same as region $D$ but with the
90   $\met/\sqrt{\rm SumJetPt}$ requirement
91 < replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
92 < is $N_{D'}=0$.  Thus the BG prediction is
93 < $N_D = K^{MC} \cdot K_{\rm fudge} \cdot N_{D'} = xx$
94 < where we used $K^{MC}=xx$ and $K_{\rm fudge}=xx \pm yy$.
95 < Note that if we were to subtract off from region $D'$
96 < the {\color{red} $xx$} DY events estimated from
97 < Table~\ref{tab:ABCD-DYptll}, the background
98 < prediction would change to $N_D=xx$.
99 <
100 < As a cross-check, we use the $P_T(\ell \ell)$
101 < method to also predict the number of events in the
102 < control region $120<{\rm SumJetPt}<300$ GeV and
103 < \met/$\sqrt{\rm SumJetPt} > 8.5$.  We predict
104 < $5.6^{+x}_{-y}$ events and we observe 4.
105 < {\color{red} Note: when we do this more carefully
106 < we will need to use a different $K$ and a different $K_{fudge}$>}
91 > replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
92 > is $N_{D'}=2$.  
93 > We next subtract off the expected DY contribution of
94 > $N_{DY}$ = $0.4 \pm 0.4$ events, as calculated
95 > in Sec.~\ref{sec:othBG}. The BG prediction is
96 > $N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 2.5 \pm 2.2$ (statistical
97 > uncertainty only, assuming Gaussian errors), where $K=1.54 \pm xx$
98 > as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
99 > This prediction is consistent with the observed yield of
100 > 1 event, as summarized in Table~\ref{tab:victory_signal} and Fig.~\ref{fig:victory}
101 > (right).
102 >
103 >
104 > \begin{figure}[hbt]
105 > \begin{center}
106 > \includegraphics[width=0.48\linewidth]{victory_control_35pb.png}
107 > \includegraphics[width=0.48\linewidth]{victory_signal_35pb.png}
108 > \caption{\label{fig:victory}\protect Distributions of
109 > tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
110 > We show the oberved distributions in both Monte Carlo and data.
111 > We also show the distributions predicted from
112 > ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.}
113 > \end{center}
114 > \end{figure}
115 >
116 >
117 >
118 > \begin{table}[hbt]
119 > \begin{center}
120 > \caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region
121 > $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
122 > the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
123 > and MC. The error on the prediction for data is statistical only, assuming
124 > Gaussian errors.}
125 > \begin{tabular}{lccc}
126 > \hline
127 >              & Predicted           &   Observed &  Obs/Pred \\
128 > \hline
129 > total SM   MC &      7.18           &       8.63 &      1.20 \\
130 >         data &    $6.06 \pm 5.95$  &         11 &      1.82 \\
131 > \hline
132 > \end{tabular}
133 > \end{center}
134 > \end{table}
135 >
136 > \begin{table}[hbt]
137 > \begin{center}
138 > \caption{\label{tab:victory_signal}Results of the dilepton $p_{T}$ template method in the signal region
139 > $\mathrm{sumJetPt} > 300$~GeV. The predicted and observed yields for
140 > the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
141 > and MC. The error on the prediction for data is statistical only, assuming
142 > Gaussian errors.}
143 > \begin{tabular}{lccc}
144 > \hline
145 >              & Predicted                &   Observed &  Obs/Pred \\
146 > \hline
147 > total SM   MC &      1.03                &       1.43 &      1.38 \\
148 >         data &    $2.53 \pm 2.25$       &          1 &      0.40 \\
149 > \hline
150 > \end{tabular}
151 > \end{center}
152 > \end{table}
153 >
154  
155 + \subsection{Summary of results}
156   To summarize: we see no evidence for an anomalous
157   rate of opposite sign isolated dilepton events
158   at high \met and high SumJetPt.  The extraction of
159   quantitative limits on new physics models is discussed
160 < in Section~\ref{sec:limits}.
160 > in Section~\ref{sec:limit}.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines