ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/results.tex (file contents):
Revision 1.8 by benhoob, Wed Nov 10 17:45:55 2010 UTC vs.
Revision 1.17 by claudioc, Sun Nov 14 13:47:56 2010 UTC

# Line 14 | Line 14 | show our choice of ABCD regions.}
14  
15   The data, together with SM expectations is presented
16   in Figure~\ref{fig:abcdData}.  We see 1 event in the
17 < signal region (region $D$).  The Standard Model MC
18 < expectation is 1.4 events.
17 > signal region (region $D$).  For more information about
18 > this one candidate events, see Appendix~\ref{sec:cand}.
19 > The Standard Model MC expectation is 1.4 events.
20  
21   \subsection{Background estimate from the ABCD method}
22   \label{sec:abcdres}
# Line 23 | Line 24 | expectation is 1.4 events.
24   The data yields in the
25   four regions are summarized in Table~\ref{tab:datayield}.
26   The prediction of the ABCD method is is given by $A\times C/B$ and
27 < is 1.5 events. (see Table~\ref{tab:datayield}.  
27 > is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming
28 > Gaussian errors), as shown in Table~\ref{tab:datayield}.  
29  
30   \begin{table}[hbt]
31   \begin{center}
32   \caption{\label{tab:datayield} Data yields in the four
33   regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
34 < by A$\times$C / B.  The quoted uncertainty
34 > by A $\times$C / B.  The quoted uncertainty
35   on the prediction in data is statistical only, assuming Gaussian errors.
36   We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
37   \begin{tabular}{l||c|c|c|c||c}
38   \hline
39 <         sample   &              A   &              B   &              C   &              D   & A$\times$C / B  \\
39 >         sample                          &              A   &              B   &              C   &              D   & A $\times$ C / B  \\
40   \hline
41 +
42   $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
43 < $t\bar{t}\rightarrow \mathrm{other}$   &           0.15   &           0.85   &           0.09   &           0.04   &           0.02  \\
44 <   $Z^0$ + jets   &           0.00   &           1.16   &           0.08   &           0.08   &           0.00  \\
45 < $W^{\pm}$ + jets   &           0.00   &           0.10   &           0.00   &           0.00   &           0.00  \\
46 <       $W^+W^-$   &           0.19   &           0.29   &           0.02   &           0.07   &           0.02  \\
47 <   $W^{\pm}Z^0$   &           0.03   &           0.04   &           0.01   &           0.01   &           0.00  \\
48 <       $Z^0Z^0$   &           0.00   &           0.03   &           0.00   &           0.00   &           0.00  \\
49 <     single top   &           0.28   &           1.00   &           0.04   &           0.01   &           0.01  \\
43 > $t\bar{t}\rightarrow \mathrm{other}$     &           0.15   &           0.85   &           0.09   &           0.04   &           0.02  \\
44 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &           0.03   &           1.47   &           0.10   &           0.10   &           0.00  \\
45 > $W^{\pm}$ + jets                         &           0.00   &           0.10   &           0.00   &           0.00   &           0.00  \\
46 >       $W^+W^-$                          &           0.19   &           0.29   &           0.02   &           0.07   &           0.02  \\
47 >   $W^{\pm}Z^0$                          &           0.03   &           0.04   &           0.01   &           0.01   &           0.00  \\
48 >       $Z^0Z^0$                          &           0.00   &           0.03   &           0.00   &           0.00   &           0.00  \\
49 >     single top                          &           0.28   &           1.00   &           0.04   &           0.01   &           0.01  \\
50   \hline
51 <    total SM MC   &           8.61   &          36.54   &           5.05   &           1.41   &           1.19  \\
51 >    total SM MC                          &           8.63   &          36.85   &           5.07   &           1.43   &           1.19  \\
52   \hline
53 <           data   &             11   &             36   &              5   &              1   &1.53 $\pm$ 0.86  \\
53 >           data                          &             11   &             36   &              5   &              1   &  $1.53\pm0.86$  \\
54   \hline
55   \end{tabular}
56   \end{center}
# Line 59 | Line 62 | $W^{\pm}$ + jets   &           0.00   &
62   %estimate of the $t\bar{t}$ contribution.  The result
63   %of this exercise is {\color{red} xx} events.
64  
65 + \clearpage
66 +
67   \subsection{Background estimate from the $P_T(\ell\ell)$ method}
68   \label{sec:victoryres}
69  
70 + We first use the $P_T(\ell \ell)$ method to predict the number of events
71 + in control region A, defined in Sec.~\ref{sec:abcd} as
72 + $125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5.
73 + We count the number of events in region
74 + $A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
75 + cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
76 + and find $N_{A'}=6$. We subtract off the expected DY contribution in this region
77 + $N_{DY} = 2.5 \pm 2.4$, derived in Sec.~\ref{sec:othBG}.
78 + To predict the yield in region A we take
79 + $N_A = K \cdot K_C \cdot ( N_{A'} - N_{DY} ) = 6.1 \pm 6.0$
80 + (statistical uncertainty only, assuming Gaussian errors),
81 + where we have taken $K = 1.73$ and $K_C = 1$. This yield is consistent
82 + with the observed yield of 11 events, as shown in
83 + Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left).
84 +
85 + Encouraged by the good agreement between predicted and observed yields
86 + in the control region, we proceed to perform the $P_T(\ell \ell)$ method
87 + in the signal region ${\rm SumJetPt}>300$~GeV.
88   The number of data events in region $D'$, which is defined in
89   Section~\ref{sec:othBG} to be the same as region $D$ but with the
90   $\met/\sqrt{\rm SumJetPt}$ requirement
91 < replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
92 < is $N_{D'}=2$.  Thus the BG prediction is
93 < $N_D = K \cdot K_C \cdot N_{D'} = 1.5$
94 < where $K=1.5 \pm xx$ as derived in Sec.~\ref{sec:victory} and
95 < $K_C = 1$.
96 < Note that if we were to subtract off from region $D'$
97 < the {\color{red} 0.8 $\pm$ 0.8} DY events estimated from
98 < Section~\ref{sec:othBG}, the background
99 < prediction would change to $N_D=1.8 \pm xx$ events.
100 <
101 < %%%TO BE REPLACED
102 < %{\color{red}As mentioned previously, for the 11/pb analysis
80 < %we use the $K$ factor from data and take $K=1$.
81 < %This will change for the full dataset.  We will also pay
82 < %more attention to the statistical errors.}
83 <
84 < %The number of data events in region $D'$, which is defined in
85 < %Section~\ref{sec:othBG} to be the same as region $D$ but with the
86 < %$\met/\sqrt{\rm SumJetPt}$ requirement
87 < %replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
88 < %is $N_{D'}=1$.  Thus the BG prediction is
89 < %$N_D = K \cdot K_{\rm fudge} \cdot N_{D'} = 1.5$
90 < %where we used $K=1.5 \pm xx$ and $K_{\rm fudge}=1.0 \pm 0.0$.
91 < %Note that if we were to subtract off from region $D'$
92 < %the {\color{red} 0.4 $\pm$ 0.4} DY events estimated from
93 < %Section~\ref{sec:othBG}, the background
94 < %prediction would change to $N_D=0.9 \pm xx$ events.
95 < %{\color{red} When we do this with a real
96 < %$K_{\rm fudge}$, the fudge factor will be different
97 < %after the DY subtraction.}
98 <
99 < As a cross-check, we use the $P_T(\ell \ell)$
100 < method to also predict the number of events in the
101 < control region $125<{\rm SumJetPt}<300$ GeV and
102 < \met/$\sqrt{\rm SumJetPt} > 8.5$.  We predict
103 < $5.6^{+x}_{-y}$ events and we observe 4.
104 < The results of the $P_T(\ell\ell)$ method are
105 < summarized in Figure~\ref{fig:victory}.
91 > replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
92 > is $N_{D'}=2$.  
93 > We next subtract off the expected DY contribution of
94 > $N_{DY}$ = $0.4 \pm 0.4$ events, as calculated
95 > in Sec.~\ref{sec:othBG}. The BG prediction is
96 > $N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 2.5 \pm 2.2$ (statistical
97 > uncertainty only, assuming Gaussian errors), where $K=1.54 \pm xx$
98 > as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
99 > This prediction is consistent with the observed yield of
100 > 1 event, as summarized in Table~\ref{tab:victory_signal} and Fig.~\ref{fig:victory}
101 > (right).
102 >
103  
104   \begin{figure}[hbt]
105   \begin{center}
# Line 117 | Line 114 | ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in
114   \end{figure}
115  
116  
117 +
118 + \begin{table}[hbt]
119 + \begin{center}
120 + \caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region
121 + $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
122 + the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
123 + and MC. The error on the prediction for data is statistical only, assuming
124 + Gaussian errors.}
125 + \begin{tabular}{lccc}
126 + \hline
127 +              & Predicted           &   Observed &  Obs/Pred \\
128 + \hline
129 + total SM   MC &      7.18           &       8.63 &      1.20 \\
130 +         data &    $6.06 \pm 5.95$  &         11 &      1.82 \\
131 + \hline
132 + \end{tabular}
133 + \end{center}
134 + \end{table}
135 +
136 + \begin{table}[hbt]
137 + \begin{center}
138 + \caption{\label{tab:victory_signal}Results of the dilepton $p_{T}$ template method in the signal region
139 + $\mathrm{sumJetPt} > 300$~GeV. The predicted and observed yields for
140 + the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
141 + and MC. The error on the prediction for data is statistical only, assuming
142 + Gaussian errors.}
143 + \begin{tabular}{lccc}
144 + \hline
145 +              & Predicted                &   Observed &  Obs/Pred \\
146 + \hline
147 + total SM   MC &      1.03                &       1.43 &      1.38 \\
148 +         data &    $2.53 \pm 2.25$       &          1 &      0.40 \\
149 + \hline
150 + \end{tabular}
151 + \end{center}
152 + \end{table}
153 +
154 +
155   \subsection{Summary of results}
156   To summarize: we see no evidence for an anomalous
157   rate of opposite sign isolated dilepton events

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines