68 |
|
|
69 |
|
We first use the $P_T(\ell \ell)$ method to predict the number of events |
70 |
|
in control region A, defined in Sec.~\ref{sec:abcd} as |
71 |
< |
$125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5. |
71 |
> |
$125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5~GeV$^{1/2}$. |
72 |
|
We count the number of events in region |
73 |
|
$A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$ |
74 |
|
cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$, |
117 |
|
\begin{table}[hbt] |
118 |
|
\begin{center} |
119 |
|
\caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region |
120 |
< |
$125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for |
120 |
> |
$125 < \mathrm{sumJetPt} < 300$~GeV$^{1/2}$. The predicted and observed yields for |
121 |
|
the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data |
122 |
|
and MC. The error on the prediction for data is statistical only, assuming |
123 |
|
Gaussian errors.} |
135 |
|
\begin{table}[hbt] |
136 |
|
\begin{center} |
137 |
|
\caption{\label{tab:victory_signal}Results of the dilepton $p_{T}$ template method in the signal region |
138 |
< |
$\mathrm{sumJetPt} > 300$~GeV. The predicted and observed yields for |
138 |
> |
$\mathrm{sumJetPt} > 300$~GeV$^{1/2}$. The predicted and observed yields for |
139 |
|
the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data |
140 |
|
and MC. The error on the prediction for data is statistical only, assuming |
141 |
|
Gaussian errors.} |