ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/results.tex (file contents):
Revision 1.13 by benhoob, Thu Nov 11 16:59:39 2010 UTC vs.
Revision 1.20 by benhoob, Mon Nov 15 10:30:52 2010 UTC

# Line 14 | Line 14 | show our choice of ABCD regions.}
14  
15   The data, together with SM expectations is presented
16   in Figure~\ref{fig:abcdData}.  We see 1 event in the
17 < signal region (region $D$).  The Standard Model MC
18 < expectation is 1.4 events.
17 > signal region (region $D$).  For more information about
18 > this one candidate events, see Appendix~\ref{sec:cand}.
19 > The Standard Model MC expectation is 1.4 events.
20  
21   \subsection{Background estimate from the ABCD method}
22   \label{sec:abcdres}
# Line 23 | Line 24 | expectation is 1.4 events.
24   The data yields in the
25   four regions are summarized in Table~\ref{tab:datayield}.
26   The prediction of the ABCD method is is given by $A\times C/B$ and
27 < is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming
27 < Gaussian errors), as shown in Table~\ref{tab:datayield}.  
27 > is $1.5 \pm 0.9(stat) \pm 0.2(syst)$ events, as shown in Table~\ref{tab:datayield}.  
28  
29   \begin{table}[hbt]
30   \begin{center}
31   \caption{\label{tab:datayield} Data yields in the four
32   regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
33 < by A$\times$C / B.  The quoted uncertainty
33 > by A $\times$C / B.  The quoted uncertainty
34   on the prediction in data is statistical only, assuming Gaussian errors.
35   We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
36   \begin{tabular}{l||c|c|c|c||c}
37   \hline
38 <         sample   &              A   &              B   &              C   &              D   & A$\times$C / B  \\
38 >         sample                          &              A   &              B   &              C   &              D   & A $\times$ C / B  \\
39   \hline
40 +
41   $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
42 < $t\bar{t}\rightarrow \mathrm{other}$   &           0.15   &           0.85   &           0.09   &           0.04   &           0.02  \\
43 <   $Z^0$ + jets   &           0.00   &           1.16   &           0.08   &           0.08   &           0.00  \\
44 < $W^{\pm}$ + jets   &           0.00   &           0.10   &           0.00   &           0.00   &           0.00  \\
45 <       $W^+W^-$   &           0.19   &           0.29   &           0.02   &           0.07   &           0.02  \\
46 <   $W^{\pm}Z^0$   &           0.03   &           0.04   &           0.01   &           0.01   &           0.00  \\
47 <       $Z^0Z^0$   &           0.00   &           0.03   &           0.00   &           0.00   &           0.00  \\
48 <     single top   &           0.28   &           1.00   &           0.04   &           0.01   &           0.01  \\
42 > $t\bar{t}\rightarrow \mathrm{other}$     &           0.15   &           0.85   &           0.09   &           0.04   &           0.02  \\
43 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &           0.03   &           1.47   &           0.10   &           0.10   &           0.00  \\
44 > $W^{\pm}$ + jets                         &           0.00   &           0.10   &           0.00   &           0.00   &           0.00  \\
45 >       $W^+W^-$                          &           0.19   &           0.29   &           0.02   &           0.07   &           0.02  \\
46 >   $W^{\pm}Z^0$                          &           0.03   &           0.04   &           0.01   &           0.01   &           0.00  \\
47 >       $Z^0Z^0$                          &           0.00   &           0.03   &           0.00   &           0.00   &           0.00  \\
48 >     single top                          &           0.28   &           1.00   &           0.04   &           0.01   &           0.01  \\
49   \hline
50 <    total SM MC   &           8.61   &          36.54   &           5.05   &           1.41   &           1.19  \\
50 >    total SM MC                          &           8.63   &          36.85   &           5.07   &           1.43   &           1.19  \\
51   \hline
52 <           data   &             11   &             36   &              5   &              1   &1.53 $\pm$ 0.86  \\
52 >           data                          &             11   &             36   &              5   &              1   &  $1.53 \pm 0.86$  \\
53   \hline
54   \end{tabular}
55   \end{center}
# Line 67 | Line 68 | $W^{\pm}$ + jets   &           0.00   &
68  
69   We first use the $P_T(\ell \ell)$ method to predict the number of events
70   in control region A, defined in Sec.~\ref{sec:abcd} as
71 < $125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5.
71 > $125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5~GeV$^{1/2}$.
72   We count the number of events in region
73   $A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
74   cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
75 < and find $N_{A'}=6$. To predict the yield in region A we take
76 < $N_A = K \cdot K_C \cdot N_{A'} = 10.4 \pm 4.2$
75 > and find $N_{A'}=6$. We subtract off the expected DY contribution in this region
76 > $N_{DY} = 2.5 \pm 2.4$, derived in Sec.~\ref{sec:othBG}.
77 > To predict the yield in region A we take
78 > $N_A = K \cdot K_C \cdot ( N_{A'} - N_{DY} ) = 6.1 \pm 6.0$
79   (statistical uncertainty only, assuming Gaussian errors),
80 < where we have taken $K = 1.73$ and $K_C = 1$. This yield is in good
81 < agreement with the observed yield of 11 events, as shown in
80 > where we have taken $K = 1.73$ and $K_C = 1$. This yield is consistent
81 > with the observed yield of 11 events, as shown in
82   Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left).
80 {\color{red} \bf Perform DY estimate for this control region}.
83  
84   Encouraged by the good agreement between predicted and observed yields
85   in the control region, we proceed to perform the $P_T(\ell \ell)$ method
# Line 88 | Line 90 | $\met/\sqrt{\rm SumJetPt}$ requirement
90   replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
91   is $N_{D'}=2$.  
92   We next subtract off the expected DY contribution of
93 < {\color{red} \bf $N_{DY}$ = 0.8 $\pm$ 0.8 (update DY estimate)} events, as calculated
93 > $N_{DY}$ = $0.4 \pm 0.4$ events, as calculated
94   in Sec.~\ref{sec:othBG}. The BG prediction is
95 < $N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 1.8^{+2.5}_{-1.8}$ (statistical
95 > $N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 2.5 \pm 2.2$ (statistical
96   uncertainty only, assuming Gaussian errors), where $K=1.54 \pm xx$
97   as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
98   This prediction is consistent with the observed yield of
# Line 111 | Line 113 | ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in
113   \end{figure}
114  
115  
116 +
117   \begin{table}[hbt]
118   \begin{center}
119   \caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region
120 < $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
120 > $125 < \mathrm{sumJetPt} < 300$~GeV$^{1/2}$. The predicted and observed yields for
121   the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
122   and MC. The error on the prediction for data is statistical only, assuming
123   Gaussian errors.}
# Line 122 | Line 125 | Gaussian errors.}
125   \hline
126                & Predicted           &   Observed &  Obs/Pred \\
127   \hline
128 < total SM   MC &      7.10           &       8.61 &      1.21 \\
129 <         data &    10.38 $\pm$ 4.24 &         11 &      1.06 \\
128 > total SM   MC &      7.18           &       8.63 &      1.20 \\
129 >         data &    $6.06 \pm 5.95$  &         11 &      1.82 \\
130   \hline
131   \end{tabular}
132   \end{center}
# Line 132 | Line 135 | total SM   MC &      7.10           &
135   \begin{table}[hbt]
136   \begin{center}
137   \caption{\label{tab:victory_signal}Results of the dilepton $p_{T}$ template method in the signal region
138 < $\mathrm{sumJetPt} > 300$~GeV. The predicted and observed yields for
138 > $\mathrm{sumJetPt} > 300$~GeV$^{1/2}$. The predicted and observed yields for
139   the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
140   and MC. The error on the prediction for data is statistical only, assuming
141   Gaussian errors.}
# Line 140 | Line 143 | Gaussian errors.}
143   \hline
144                & Predicted                &   Observed &  Obs/Pred \\
145   \hline
146 < total SM   MC &      0.96                &       1.41 &      1.46 \\
147 <         data &  $1.8^{+2.5}_{-1.8}$     &          1 &      0.56 \\
146 > total SM   MC &      1.03                &       1.43 &      1.38 \\
147 >         data &    $2.53 \pm 2.25$       &          1 &      0.40 \\
148   \hline
149   \end{tabular}
150   \end{center}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines