ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/results.tex (file contents):
Revision 1.2 by claudioc, Fri Nov 5 23:07:43 2010 UTC vs.
Revision 1.21 by benhoob, Mon Nov 15 10:39:55 2010 UTC

# Line 1 | Line 1
1 + \clearpage
2 +
3   \section{Results}
4   \label{sec:results}
5  
4 \noindent {\color{red} In the 11 pb everything is very
5 simple because there are a few zeros.  This text is written
6 for the full dataset under the assumption that some of these
7 numbers will not be zero anymore.}
8
6   \begin{figure}[tbh]
7   \begin{center}
8 < \includegraphics[width=0.75\linewidth]{abcdData.png}
8 > \includegraphics[width=0.75\linewidth]{abcd_35pb.png}
9   \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
10   vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data.  Here we also
11   show our choice of ABCD regions.}
12   \end{center}
13   \end{figure}
14  
18
15   The data, together with SM expectations is presented
16 < in Figure~\ref{fig:abcdData}.  We see $\color{red} 0$
17 < events in the signal region (region $D$).  The Standard Model
18 < MC expectation is {\color{red} 0.4} events.
16 > in Figure~\ref{fig:abcdData}.  We see 1 event in the
17 > signal region (region $D$).  For more information about
18 > this one candidate events, see Appendix~\ref{sec:cand}.
19 > The Standard Model MC expectation is 1.4 events.
20  
21   \subsection{Background estimate from the ABCD method}
22   \label{sec:abcdres}
23  
24   The data yields in the
25   four regions are summarized in Table~\ref{tab:datayield}.
26 < The prediction of the ABCD method is is given by $AC/B$ and
27 < is 0.5 events.
31 < (see Table~\ref{tab:datayield}.  
26 > The prediction of the ABCD method is is given by $A\times C/B$ and
27 > is $1.5 \pm 0.9(stat) \pm 0.2(syst)$ events, as shown in Table~\ref{tab:datayield}.  
28  
29   \begin{table}[hbt]
30   \begin{center}
31   \caption{\label{tab:datayield} Data yields in the four
32 < regions of Figure~\ref{fig:abcdData}.  We also show the
33 < SM Monte Carlo expectations.}
34 < \begin{tabular}{|l|c|c|c|c||c|}
35 < \hline
36 <      &A   & B    & C   & D   & AC/B \\ \hline
37 < Data  &3   & 6    & 1   & 0   & $0.5^{+x}_{-y}$ \\
38 < SM MC &2.5 &11.2  & 1.5 & 0.4 & 0.4 \\
32 > regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
33 > by A $\times$C / B.  The quoted uncertainty
34 > on the prediction in data is statistical only, assuming Gaussian errors.
35 > We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
36 > \begin{tabular}{l||c|c|c|c||c}
37 > \hline
38 >         sample                          &              A   &              B   &              C   &              D   & A $\times$ C / B  \\
39 > \hline
40 >
41 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
42 > $t\bar{t}\rightarrow \mathrm{other}$     &           0.15   &           0.85   &           0.09   &           0.04   &           0.02  \\
43 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &           0.03   &           1.47   &           0.10   &           0.10   &           0.00  \\
44 > $W^{\pm}$ + jets                         &           0.00   &           0.10   &           0.00   &           0.00   &           0.00  \\
45 >       $W^+W^-$                          &           0.19   &           0.29   &           0.02   &           0.07   &           0.02  \\
46 >   $W^{\pm}Z^0$                          &           0.03   &           0.04   &           0.01   &           0.01   &           0.00  \\
47 >       $Z^0Z^0$                          &           0.00   &           0.03   &           0.00   &           0.00   &           0.00  \\
48 >     single top                          &           0.28   &           1.00   &           0.04   &           0.01   &           0.01  \\
49 > \hline
50 >    total SM MC                          &           8.63   &          36.85   &           5.07   &           1.43   &           1.19  \\
51 > \hline
52 >           data                          &             11   &             36   &              5   &              1   &  $1.53 \pm 0.86$  \\
53   \hline
54   \end{tabular}
55   \end{center}
56   \end{table}
57  
58 < As a cross-check, we can subtract from the yields in
59 < Table~\ref{tab:datayield} the expected DY contributions
60 < from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
61 < estimate of the $t\bar{t}$ contribution.  The result
62 < of this exercise is {\color{red} xx} events.
58 > %As a cross-check, we can subtract from the yields in
59 > %Table~\ref{tab:datayield} the expected DY contributions
60 > %from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
61 > %estimate of the $t\bar{t}$ contribution.  The result
62 > %of this exercise is {\color{red} xx} events.
63 >
64 > \clearpage
65  
66   \subsection{Background estimate from the $P_T(\ell\ell)$ method}
67   \label{sec:victoryres}
68  
69 <
70 <
69 > We first use the $P_T(\ell \ell)$ method to predict the number of events
70 > in control region A, defined in Sec.~\ref{sec:abcd} as
71 > $125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5~GeV$^{1/2}$.
72 > We count the number of events in region
73 > $A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
74 > cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
75 > and find $N_{A'}=6$. We subtract off the expected DY contribution in this region
76 > $N_{DY} = 2.5 \pm 2.4$, derived in Sec.~\ref{sec:othBG}.
77 > To predict the yield in region A we take
78 > $N_A = K \cdot K_C \cdot ( N_{A'} - N_{DY} ) = 6.1 \pm 6.0$
79 > (statistical uncertainty only, assuming Gaussian errors),
80 > where we have taken $K = 1.73$ and $K_C = 1$. This yield is consistent
81 > with the observed yield of 11 events, as shown in
82 > Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left).
83 >
84 > Encouraged by the good agreement between predicted and observed yields
85 > in the control region, we proceed to perform the $P_T(\ell \ell)$ method
86 > in the signal region ${\rm SumJetPt}>300$~GeV.
87   The number of data events in region $D'$, which is defined in
88   Section~\ref{sec:othBG} to be the same as region $D$ but with the
89   $\met/\sqrt{\rm SumJetPt}$ requirement
90 < replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
91 < is $N_{D'}=0$.  Thus the BG prediction is
92 < $N_D = K^{MC} \cdot K_{\rm fudge} \cdot N_{D'} = xx$
93 < where we used $K^{MC}=xx$ and $K_{\rm fudge}=xx \pm yy$.
94 < Note that if we were to subtract off from region $D'$
95 < the {\color{red} $xx$} DY events estimated from
96 < Table~\ref{tab:ABCD-DYptll}, the background
97 < prediction would change to $N_D=xx$.
98 <
99 < As a cross-check, we use the $P_T(\ell \ell)$
100 < method to also predict the number of events in the
101 < control region $120<{\rm SumJetPt}<300$ GeV and
102 < \met/$\sqrt{\rm SumJetPt} > 8.5$.  We predict
103 < $5.6^{+x}_{-y}$ events and we observe 4.
104 < {\color{red} Note: when we do this more carefully
105 < we will need to use a different $K$ and a different $K_{fudge}$>}
90 > replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
91 > is $N_{D'}=2$.  
92 > We next subtract off the expected DY contribution of
93 > $N_{DY}$ = $0.4 \pm 0.4$ events, as calculated
94 > in Sec.~\ref{sec:othBG}. The BG prediction is
95 > $N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 2.5 \pm 2.2$ (statistical
96 > uncertainty only, assuming Gaussian errors), where $K=1.54 \pm xx$
97 > as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
98 > This prediction is consistent with the observed yield of
99 > 1 event, as summarized in Table~\ref{tab:victory_signal} and Fig.~\ref{fig:victory}
100 > (right).
101 >
102 >
103 > \begin{figure}[hbt]
104 > \begin{center}
105 > \includegraphics[width=0.48\linewidth]{victory_control_35pb.png}
106 > \includegraphics[width=0.48\linewidth]{victory_signal_35pb.png}
107 > \caption{\label{fig:victory}\protect Distributions of
108 > tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
109 > We show the oberved distributions in both Monte Carlo and data.
110 > We also show the distributions predicted from
111 > ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.}
112 > \end{center}
113 > \end{figure}
114 >
115 >
116 >
117 > \begin{table}[hbt]
118 > \begin{center}
119 > \caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region
120 > $125 < \mathrm{sumJetPt} < 300$~GeV$^{1/2}$. The predicted and observed yields for
121 > the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
122 > and MC. The error on the prediction for data is statistical only, assuming
123 > Gaussian errors.}
124 > \begin{tabular}{lccc}
125 > \hline
126 >              & Predicted           &   Observed &  Obs/Pred \\
127 > \hline
128 > total SM   MC &      7.18           &       8.63 &      1.20 \\
129 >         data &    $6.06 \pm 5.95$  &         11 &      1.82 \\
130 > \hline
131 > \end{tabular}
132 > \end{center}
133 > \end{table}
134 >
135 > \begin{table}[hbt]
136 > \begin{center}
137 > \caption{\label{tab:victory_signal}Results of the dilepton $p_{T}$ template method in the signal region
138 > $\mathrm{sumJetPt} > 300$~GeV$^{1/2}$. The predicted and observed yields for
139 > the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
140 > and MC. The error on the prediction for data is statistical only, assuming
141 > Gaussian errors.}
142 > \begin{tabular}{lccc}
143 > \hline
144 >              & Predicted                &   Observed &  Obs/Pred \\
145 > \hline
146 > total SM   MC &      1.03                &       1.43 &      1.38 \\
147 >         data &    $2.53 \pm 2.25$       &          1 &      0.40 \\
148 > \hline
149 > \end{tabular}
150 > \end{center}
151 > \end{table}
152 >
153 >
154 > \clearpage
155 > \subsection{Summary of results}
156 >
157 > In summary, in the signal region defined as $\mathrm{SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt} > 8.5$~GeV$^{1/2}$:\\
158 > We observe 1 event. \\
159 > We expect 1.4 events from Standard Model MC prediction. \\
160 > The ABCD data driven method predicts $1.5 \pm 0.9(stat) \pm 0.2(syst)$ events. \\
161 > The  $P_T(\ell\ell)$ method predicts $2.5 \pm 2.2$ events.
162 >  
163 > All three background estimates are consistent within their uncertainties.
164 > We thus take as our best estimate of the Standard Model yield in
165 > the signal region the MC prediction and assign as an uncertainty the
166 > maximal deviation with either of the data-driven methods,  $N_{BG}=1.4 \pm 1.1$.
167  
168 < To summarize: we see no evidence for an anomalous
168 > We conclude that we see no evidence for an anomalous
169   rate of opposite sign isolated dilepton events
170   at high \met and high SumJetPt.  The extraction of
171   quantitative limits on new physics models is discussed
172 < in Section~\ref{sec:limits}.
172 > in Section~\ref{sec:limit}.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines