ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/results.tex (file contents):
Revision 1.11 by benhoob, Thu Nov 11 15:29:40 2010 UTC vs.
Revision 1.22 by claudioc, Tue Nov 16 12:23:36 2010 UTC

# Line 1 | Line 1
1 < \clearpage
1 > %\clearpage
2  
3   \section{Results}
4   \label{sec:results}
# Line 14 | Line 14 | show our choice of ABCD regions.}
14  
15   The data, together with SM expectations is presented
16   in Figure~\ref{fig:abcdData}.  We see 1 event in the
17 < signal region (region $D$).  The Standard Model MC
18 < expectation is 1.4 events.
17 > signal region (region $D$).  For more information about
18 > this one candidate events, see Appendix~\ref{sec:cand}.
19 > The Standard Model MC expectation is 1.4 events.
20  
21   \subsection{Background estimate from the ABCD method}
22   \label{sec:abcdres}
# Line 23 | Line 24 | expectation is 1.4 events.
24   The data yields in the
25   four regions are summarized in Table~\ref{tab:datayield}.
26   The prediction of the ABCD method is is given by $A\times C/B$ and
27 < is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming
27 < Gaussian errors). (see Table~\ref{tab:datayield}).  
27 > is $1.5 \pm 0.9(stat) \pm 0.2(syst)$ events, as shown in Table~\ref{tab:datayield}.  
28  
29   \begin{table}[hbt]
30   \begin{center}
31   \caption{\label{tab:datayield} Data yields in the four
32   regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
33 < by A$\times$C / B.  The quoted uncertainty
33 > by A $\times$C / B.  The quoted uncertainty
34   on the prediction in data is statistical only, assuming Gaussian errors.
35   We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
36   \begin{tabular}{l||c|c|c|c||c}
37   \hline
38 <         sample   &              A   &              B   &              C   &              D   & A$\times$C / B  \\
38 >         sample                          &              A   &              B   &              C   &              D   & A $\times$ C / B  \\
39   \hline
40 +
41   $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
42 < $t\bar{t}\rightarrow \mathrm{other}$   &           0.15   &           0.85   &           0.09   &           0.04   &           0.02  \\
43 <   $Z^0$ + jets   &           0.00   &           1.16   &           0.08   &           0.08   &           0.00  \\
44 < $W^{\pm}$ + jets   &           0.00   &           0.10   &           0.00   &           0.00   &           0.00  \\
45 <       $W^+W^-$   &           0.19   &           0.29   &           0.02   &           0.07   &           0.02  \\
46 <   $W^{\pm}Z^0$   &           0.03   &           0.04   &           0.01   &           0.01   &           0.00  \\
47 <       $Z^0Z^0$   &           0.00   &           0.03   &           0.00   &           0.00   &           0.00  \\
48 <     single top   &           0.28   &           1.00   &           0.04   &           0.01   &           0.01  \\
42 > $t\bar{t}\rightarrow \mathrm{other}$     &           0.15   &           0.85   &           0.09   &           0.04   &           0.02  \\
43 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &           0.03   &           1.47   &           0.10   &           0.10   &           0.00  \\
44 > $W^{\pm}$ + jets                         &           0.00   &           0.10   &           0.00   &           0.00   &           0.00  \\
45 >       $W^+W^-$                          &           0.19   &           0.29   &           0.02   &           0.07   &           0.02  \\
46 >   $W^{\pm}Z^0$                          &           0.03   &           0.04   &           0.01   &           0.01   &           0.00  \\
47 >       $Z^0Z^0$                          &           0.00   &           0.03   &           0.00   &           0.00   &           0.00  \\
48 >     single top                          &           0.28   &           1.00   &           0.04   &           0.01   &           0.01  \\
49   \hline
50 <    total SM MC   &           8.61   &          36.54   &           5.05   &           1.41   &           1.19  \\
50 >    total SM MC                          &           8.63   &          36.85   &           5.07   &           1.43   &           1.19  \\
51   \hline
52 <           data   &             11   &             36   &              5   &              1   &1.53 $\pm$ 0.86  \\
52 >           data                          &             11   &             36   &              5   &              1   &  $1.53 \pm 0.86$  \\
53   \hline
54   \end{tabular}
55   \end{center}
# Line 60 | Line 61 | $W^{\pm}$ + jets   &           0.00   &
61   %estimate of the $t\bar{t}$ contribution.  The result
62   %of this exercise is {\color{red} xx} events.
63  
64 < \clearpage
64 > %\clearpage
65  
66   \subsection{Background estimate from the $P_T(\ell\ell)$ method}
67   \label{sec:victoryres}
68  
69   We first use the $P_T(\ell \ell)$ method to predict the number of events
70 < in a control region defined by $125<{\rm SumJetPt}<300$~GeV and
71 < \met/$\sqrt{\rm SumJetPt} > 8.5$. We find 6 events satisfying the
72 < corresponding selection with the \met/$\sqrt{\rm SumJetPt}$ cut replaced
73 < by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ cut. The predicted yield
74 < is then given by $N_A = K \cdot K_C \cdot N_{A'} = 10.4 \pm 4.2$
70 > in control region A, defined in Sec.~\ref{sec:abcd} as
71 > $125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5~GeV$^{1/2}$.
72 > We count the number of events in region
73 > $A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
74 > cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
75 > and find $N_{A'}=6$. We subtract off the expected DY contribution in this region
76 > $N_{DY} = 2.5 \pm 2.4$, derived in Sec.~\ref{sec:othBG}.
77 > To predict the yield in region A we take
78 > $N_A = K \cdot K_C \cdot ( N_{A'} - N_{DY} ) = 6.1 \pm 6.0$
79   (statistical uncertainty only, assuming Gaussian errors),
80 < where we have taken $K = 1.73$ and $K_C = 1$. This yield is in good
81 < agreement with the observed yield of 11 events, as shown in
80 > where we have taken $K = 1.73$ and $K_C = 1$. This yield is consistent
81 > with the observed yield of 11 events, as shown in
82   Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left).
78 {\color{ref} \bf Perform DY estimate for this control region}.
83  
84   Encouraged by the good agreement between predicted and observed yields
85   in the control region, we proceed to perform the $P_T(\ell \ell)$ method
# Line 84 | Line 88 | The number of data events in region $D'$
88   Section~\ref{sec:othBG} to be the same as region $D$ but with the
89   $\met/\sqrt{\rm SumJetPt}$ requirement
90   replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
91 < is $N_{D'}=2$.  Thus the BG prediction is
88 < $N_D = K \cdot K_C \cdot N_{D'} = 3.07 \pm 2.17$ where $K=1.54 \pm xx$
89 < as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
91 > is $N_{D'}=2$.  
92   We next subtract off the expected DY contribution of
93 < {\color{red} \bf 0.8 $\pm$ 0.8 (update DY estimate)} events, as calculated
94 < in Sec.~\ref{sec:othBG}. This gives a predicted yield of
95 < $N_D=1.8^{+2.5}_{-1.8}$ events, which is consistent with the observed yield of
96 < 1 event.
97 <
93 > $N_{DY}$ = $0.4 \pm 0.4$ events, as calculated
94 > in Sec.~\ref{sec:othBG}. The BG prediction is
95 > $N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 2.5 \pm 2.2$ (statistical
96 > uncertainty only, assuming Gaussian errors), where $K=1.54 \pm xx$
97 > as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
98 > This prediction is consistent with the observed yield of
99 > 1 event, as summarized in Table~\ref{tab:victory_signal} and Fig.~\ref{fig:victory}
100 > (right).
101  
102  
103   \begin{figure}[hbt]
# Line 108 | Line 113 | ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in
113   \end{figure}
114  
115  
116 +
117   \begin{table}[hbt]
118   \begin{center}
119 < \label{tab:victory_control}
120 < \caption{Results of the dilepton $p_{T}$ template method in the control region
115 < $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
119 > \caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region
120 > $125 < \mathrm{sumJetPt} < 300$~GeV$^{1/2}$. The predicted and observed yields for
121   the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
122   and MC. The error on the prediction for data is statistical only, assuming
123   Gaussian errors.}
124 < \begin{tabular}{l|c|c|c}
124 > \begin{tabular}{lccc}
125   \hline
126                & Predicted           &   Observed &  Obs/Pred \\
127   \hline
128 < total SM   MC &      7.10           &       8.61 &      1.21 \\
129 <         data &    10.38 $\pm$ 4.24 &         11 &      1.06 \\
128 > total SM   MC &      7.18           &       8.63 &      1.20 \\
129 >         data &    $6.06 \pm 5.95$  &         11 &      1.82 \\
130   \hline
131   \end{tabular}
132   \end{center}
# Line 129 | Line 134 | total SM   MC &      7.10           &
134  
135   \begin{table}[hbt]
136   \begin{center}
137 < \label{tab:victory_control}
138 < \caption{Results of the dilepton $p_{T}$ template method in the signal region
134 < $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
137 > \caption{\label{tab:victory_signal}Results of the dilepton $p_{T}$ template method in the signal region
138 > $\mathrm{sumJetPt} > 300$~GeV$^{1/2}$. The predicted and observed yields for
139   the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
140   and MC. The error on the prediction for data is statistical only, assuming
141   Gaussian errors.}
142 < \begin{tabular}{l|c|c|c}
142 > \begin{tabular}{lccc}
143   \hline
144                & Predicted                &   Observed &  Obs/Pred \\
145   \hline
146 < total SM   MC &      0.96                &       1.41 &      1.46 \\
147 <         data &  $N_D=1.8^{+2.5}_{-1.8}$ &          1 &      0.33 \\
146 > total SM   MC &      1.03                &       1.43 &      1.38 \\
147 >         data &    $2.53 \pm 2.25$       &          1 &      0.40 \\
148   \hline
149   \end{tabular}
150   \end{center}
151   \end{table}
152  
153  
154 + % \clearpage
155   \subsection{Summary of results}
156 < To summarize: we see no evidence for an anomalous
156 >
157 > In summary, in the signal region defined as $\mathrm{SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt} > 8.5$~GeV$^{1/2}$:\\
158 > We observe 1 event. \\
159 > We expect 1.4 events from Standard Model MC prediction. \\
160 > The ABCD data driven method predicts $1.5 \pm 0.9(stat) \pm 0.2(syst)$ events. \\
161 > The  $P_T(\ell\ell)$ method predicts $2.5 \pm 2.2$ events.
162 >  
163 > All three background estimates are consistent within their uncertainties.
164 > We thus take as our best estimate of the Standard Model yield in
165 > the signal region the MC prediction and assign as an uncertainty the
166 > maximal deviation with either of the data-driven methods,  $N_{BG}=1.4 \pm 1.1$.
167 >
168 > We conclude that we see no evidence for an anomalous
169   rate of opposite sign isolated dilepton events
170   at high \met and high SumJetPt.  The extraction of
171   quantitative limits on new physics models is discussed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines