1 |
< |
\clearpage |
1 |
> |
%\clearpage |
2 |
|
|
3 |
|
\section{Results} |
4 |
|
\label{sec:results} |
14 |
|
|
15 |
|
The data, together with SM expectations is presented |
16 |
|
in Figure~\ref{fig:abcdData}. We see 1 event in the |
17 |
< |
signal region (region $D$). The Standard Model MC |
18 |
< |
expectation is 1.4 events. |
17 |
> |
signal region (region $D$). For more information about |
18 |
> |
this one candidate events, see Appendix~\ref{sec:cand}. |
19 |
> |
The Standard Model MC expectation is 1.4 events. |
20 |
|
|
21 |
|
\subsection{Background estimate from the ABCD method} |
22 |
|
\label{sec:abcdres} |
24 |
|
The data yields in the |
25 |
|
four regions are summarized in Table~\ref{tab:datayield}. |
26 |
|
The prediction of the ABCD method is is given by $A\times C/B$ and |
27 |
< |
is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming |
27 |
< |
Gaussian errors). (see Table~\ref{tab:datayield}). |
27 |
> |
is $1.5 \pm 0.9(stat) \pm 0.2(syst)$ events, as shown in Table~\ref{tab:datayield}. |
28 |
|
|
29 |
|
\begin{table}[hbt] |
30 |
|
\begin{center} |
31 |
|
\caption{\label{tab:datayield} Data yields in the four |
32 |
|
regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given |
33 |
< |
by A$\times$C / B. The quoted uncertainty |
33 |
> |
by A $\times$C / B. The quoted uncertainty |
34 |
|
on the prediction in data is statistical only, assuming Gaussian errors. |
35 |
|
We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.} |
36 |
|
\begin{tabular}{l||c|c|c|c||c} |
37 |
|
\hline |
38 |
< |
sample & A & B & C & D & A$\times$C / B \\ |
38 |
> |
sample & A & B & C & D & A $\times$ C / B \\ |
39 |
|
\hline |
40 |
+ |
|
41 |
|
$t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 7.96 & 33.07 & 4.81 & 1.20 & 1.16 \\ |
42 |
< |
$t\bar{t}\rightarrow \mathrm{other}$ & 0.15 & 0.85 & 0.09 & 0.04 & 0.02 \\ |
43 |
< |
$Z^0$ + jets & 0.00 & 1.16 & 0.08 & 0.08 & 0.00 \\ |
44 |
< |
$W^{\pm}$ + jets & 0.00 & 0.10 & 0.00 & 0.00 & 0.00 \\ |
45 |
< |
$W^+W^-$ & 0.19 & 0.29 & 0.02 & 0.07 & 0.02 \\ |
46 |
< |
$W^{\pm}Z^0$ & 0.03 & 0.04 & 0.01 & 0.01 & 0.00 \\ |
47 |
< |
$Z^0Z^0$ & 0.00 & 0.03 & 0.00 & 0.00 & 0.00 \\ |
48 |
< |
single top & 0.28 & 1.00 & 0.04 & 0.01 & 0.01 \\ |
42 |
> |
$t\bar{t}\rightarrow \mathrm{other}$ & 0.15 & 0.85 & 0.09 & 0.04 & 0.02 \\ |
43 |
> |
$Z^0 \rightarrow \ell^{+}\ell^{-}$ & 0.03 & 1.47 & 0.10 & 0.10 & 0.00 \\ |
44 |
> |
$W^{\pm}$ + jets & 0.00 & 0.10 & 0.00 & 0.00 & 0.00 \\ |
45 |
> |
$W^+W^-$ & 0.19 & 0.29 & 0.02 & 0.07 & 0.02 \\ |
46 |
> |
$W^{\pm}Z^0$ & 0.03 & 0.04 & 0.01 & 0.01 & 0.00 \\ |
47 |
> |
$Z^0Z^0$ & 0.00 & 0.03 & 0.00 & 0.00 & 0.00 \\ |
48 |
> |
single top & 0.28 & 1.00 & 0.04 & 0.01 & 0.01 \\ |
49 |
|
\hline |
50 |
< |
total SM MC & 8.61 & 36.54 & 5.05 & 1.41 & 1.19 \\ |
50 |
> |
total SM MC & 8.63 & 36.85 & 5.07 & 1.43 & 1.19 \\ |
51 |
|
\hline |
52 |
< |
data & 11 & 36 & 5 & 1 &1.53 $\pm$ 0.86 \\ |
52 |
> |
data & 11 & 36 & 5 & 1 & $1.53 \pm 0.86$ \\ |
53 |
|
\hline |
54 |
|
\end{tabular} |
55 |
|
\end{center} |
61 |
|
%estimate of the $t\bar{t}$ contribution. The result |
62 |
|
%of this exercise is {\color{red} xx} events. |
63 |
|
|
64 |
< |
\clearpage |
64 |
> |
%\clearpage |
65 |
|
|
66 |
|
\subsection{Background estimate from the $P_T(\ell\ell)$ method} |
67 |
|
\label{sec:victoryres} |
68 |
|
|
69 |
|
We first use the $P_T(\ell \ell)$ method to predict the number of events |
70 |
|
in control region A, defined in Sec.~\ref{sec:abcd} as |
71 |
< |
$125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5. |
71 |
> |
$125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5~GeV$^{1/2}$. |
72 |
|
We count the number of events in region |
73 |
|
$A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$ |
74 |
|
cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$, |
75 |
< |
and find $N_{A'}=6$. To predict the yield in region A we take |
76 |
< |
$N_A = K \cdot K_C \cdot N_{A'} = 10.4 \pm 4.2$ |
75 |
> |
and find $N_{A'}=6$. We subtract off the expected DY contribution in this region |
76 |
> |
$N_{DY} = 2.5 \pm 2.4$, derived in Sec.~\ref{sec:othBG}. |
77 |
> |
To predict the yield in region A we take |
78 |
> |
$N_A = K \cdot K_C \cdot ( N_{A'} - N_{DY} ) = 6.1 \pm 6.0$ |
79 |
|
(statistical uncertainty only, assuming Gaussian errors), |
80 |
< |
where we have taken $K = 1.73$ and $K_C = 1$. This yield is in good |
81 |
< |
agreement with the observed yield of 11 events, as shown in |
80 |
> |
where we have taken $K = 1.73$ and $K_C = 1$. This yield is consistent |
81 |
> |
with the observed yield of 11 events, as shown in |
82 |
|
Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left). |
80 |
– |
{\color{red} \bf Perform DY estimate for this control region}. |
83 |
|
|
84 |
|
Encouraged by the good agreement between predicted and observed yields |
85 |
|
in the control region, we proceed to perform the $P_T(\ell \ell)$ method |
88 |
|
Section~\ref{sec:othBG} to be the same as region $D$ but with the |
89 |
|
$\met/\sqrt{\rm SumJetPt}$ requirement |
90 |
|
replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement, |
91 |
< |
is $N_{D'}=2$. Thus the BG prediction is |
90 |
< |
$N_D = K \cdot K_C \cdot N_{D'} = 3.07 \pm 2.17$ where $K=1.54 \pm xx$ |
91 |
< |
as derived in Sec.~\ref{sec:victory} and $K_C = 1$. |
91 |
> |
is $N_{D'}=2$. |
92 |
|
We next subtract off the expected DY contribution of |
93 |
< |
{\color{red} \bf 0.8 $\pm$ 0.8 (update DY estimate)} events, as calculated |
94 |
< |
in Sec.~\ref{sec:othBG}. This gives a predicted yield of |
95 |
< |
$N_D=1.8^{+2.5}_{-1.8}$ events, which is consistent with the observed yield of |
93 |
> |
$N_{DY}$ = $0.4 \pm 0.4$ events, as calculated |
94 |
> |
in Sec.~\ref{sec:othBG}. The BG prediction is |
95 |
> |
$N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 2.5 \pm 2.2$ (statistical |
96 |
> |
uncertainty only, assuming Gaussian errors), where $K=1.54 \pm xx$ |
97 |
> |
as derived in Sec.~\ref{sec:victory} and $K_C = 1$. |
98 |
> |
This prediction is consistent with the observed yield of |
99 |
|
1 event, as summarized in Table~\ref{tab:victory_signal} and Fig.~\ref{fig:victory} |
100 |
|
(right). |
101 |
|
|
113 |
|
\end{figure} |
114 |
|
|
115 |
|
|
116 |
+ |
|
117 |
|
\begin{table}[hbt] |
118 |
|
\begin{center} |
119 |
< |
\label{tab:victory_control} |
120 |
< |
\caption{Results of the dilepton $p_{T}$ template method in the control region |
117 |
< |
$125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for |
119 |
> |
\caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region |
120 |
> |
$125 < \mathrm{sumJetPt} < 300$~GeV$^{1/2}$. The predicted and observed yields for |
121 |
|
the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data |
122 |
|
and MC. The error on the prediction for data is statistical only, assuming |
123 |
|
Gaussian errors.} |
124 |
< |
\begin{tabular}{l|c|c|c} |
124 |
> |
\begin{tabular}{lccc} |
125 |
|
\hline |
126 |
|
& Predicted & Observed & Obs/Pred \\ |
127 |
|
\hline |
128 |
< |
total SM MC & 7.10 & 8.61 & 1.21 \\ |
129 |
< |
data & 10.38 $\pm$ 4.24 & 11 & 1.06 \\ |
128 |
> |
total SM MC & 7.18 & 8.63 & 1.20 \\ |
129 |
> |
data & $6.06 \pm 5.95$ & 11 & 1.82 \\ |
130 |
|
\hline |
131 |
|
\end{tabular} |
132 |
|
\end{center} |
134 |
|
|
135 |
|
\begin{table}[hbt] |
136 |
|
\begin{center} |
137 |
< |
\label{tab:victory_signal} |
138 |
< |
\caption{Results of the dilepton $p_{T}$ template method in the signal region |
136 |
< |
$125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for |
137 |
> |
\caption{\label{tab:victory_signal}Results of the dilepton $p_{T}$ template method in the signal region |
138 |
> |
$\mathrm{sumJetPt} > 300$~GeV$^{1/2}$. The predicted and observed yields for |
139 |
|
the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data |
140 |
|
and MC. The error on the prediction for data is statistical only, assuming |
141 |
|
Gaussian errors.} |
142 |
< |
\begin{tabular}{l|c|c|c} |
142 |
> |
\begin{tabular}{lccc} |
143 |
|
\hline |
144 |
|
& Predicted & Observed & Obs/Pred \\ |
145 |
|
\hline |
146 |
< |
total SM MC & 0.96 & 1.41 & 1.46 \\ |
147 |
< |
data & $1.8^{+2.5}_{-1.8}$ & 1 & 0.56 \\ |
146 |
> |
total SM MC & 1.03 & 1.43 & 1.38 \\ |
147 |
> |
data & $2.53 \pm 2.25$ & 1 & 0.40 \\ |
148 |
|
\hline |
149 |
|
\end{tabular} |
150 |
|
\end{center} |
151 |
|
\end{table} |
152 |
|
|
153 |
|
|
154 |
+ |
% \clearpage |
155 |
|
\subsection{Summary of results} |
156 |
< |
To summarize: we see no evidence for an anomalous |
156 |
> |
|
157 |
> |
In summary, in the signal region defined as $\mathrm{SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt} > 8.5$~GeV$^{1/2}$:\\ |
158 |
> |
We observe 1 event. \\ |
159 |
> |
We expect 1.4 events from Standard Model MC prediction. \\ |
160 |
> |
The ABCD data driven method predicts $1.5 \pm 0.9(stat) \pm 0.2(syst)$ events. \\ |
161 |
> |
The $P_T(\ell\ell)$ method predicts $2.5 \pm 2.2$ events. |
162 |
> |
|
163 |
> |
All three background estimates are consistent within their uncertainties. |
164 |
> |
We thus take as our best estimate of the Standard Model yield in |
165 |
> |
the signal region the MC prediction and assign as an uncertainty the |
166 |
> |
maximal deviation with either of the data-driven methods, $N_{BG}=1.4 \pm 1.1$. |
167 |
> |
|
168 |
> |
We conclude that we see no evidence for an anomalous |
169 |
|
rate of opposite sign isolated dilepton events |
170 |
|
at high \met and high SumJetPt. The extraction of |
171 |
|
quantitative limits on new physics models is discussed |