1 |
< |
\clearpage |
1 |
> |
%\clearpage |
2 |
|
|
3 |
|
\section{Results} |
4 |
|
\label{sec:results} |
49 |
|
\hline |
50 |
|
total SM MC & 8.63 & 36.85 & 5.07 & 1.43 & 1.19 \\ |
51 |
|
\hline |
52 |
< |
data & 11 & 36 & 5 & 1 & $1.53 \pm 0.86(stat) \pm 0.15(syst)$ \\ |
52 |
> |
data & 11 & 36 & 5 & 1 & $1.53 \pm 0.86$ \\ |
53 |
|
\hline |
54 |
|
\end{tabular} |
55 |
|
\end{center} |
61 |
|
%estimate of the $t\bar{t}$ contribution. The result |
62 |
|
%of this exercise is {\color{red} xx} events. |
63 |
|
|
64 |
< |
\clearpage |
64 |
> |
%\clearpage |
65 |
|
|
66 |
|
\subsection{Background estimate from the $P_T(\ell\ell)$ method} |
67 |
|
\label{sec:victoryres} |
68 |
|
|
69 |
|
We first use the $P_T(\ell \ell)$ method to predict the number of events |
70 |
|
in control region A, defined in Sec.~\ref{sec:abcd} as |
71 |
< |
$125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5. |
71 |
> |
$125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5~GeV$^{1/2}$. |
72 |
|
We count the number of events in region |
73 |
|
$A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$ |
74 |
|
cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$, |
117 |
|
\begin{table}[hbt] |
118 |
|
\begin{center} |
119 |
|
\caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region |
120 |
< |
$125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for |
120 |
> |
$125 < \mathrm{sumJetPt} < 300$~GeV$^{1/2}$. The predicted and observed yields for |
121 |
|
the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data |
122 |
|
and MC. The error on the prediction for data is statistical only, assuming |
123 |
|
Gaussian errors.} |
135 |
|
\begin{table}[hbt] |
136 |
|
\begin{center} |
137 |
|
\caption{\label{tab:victory_signal}Results of the dilepton $p_{T}$ template method in the signal region |
138 |
< |
$\mathrm{sumJetPt} > 300$~GeV. The predicted and observed yields for |
138 |
> |
$\mathrm{sumJetPt} > 300$~GeV$^{1/2}$. The predicted and observed yields for |
139 |
|
the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data |
140 |
|
and MC. The error on the prediction for data is statistical only, assuming |
141 |
|
Gaussian errors.} |
151 |
|
\end{table} |
152 |
|
|
153 |
|
|
154 |
+ |
% \clearpage |
155 |
|
\subsection{Summary of results} |
156 |
< |
To summarize: we see no evidence for an anomalous |
156 |
> |
|
157 |
> |
In summary, in the signal region defined as $\mathrm{SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt} > 8.5$~GeV$^{1/2}$:\\ |
158 |
> |
We observe 1 event. \\ |
159 |
> |
We expect 1.4 events from Standard Model MC prediction. \\ |
160 |
> |
The ABCD data driven method predicts $1.5 \pm 0.9(stat) \pm 0.2(syst)$ events. \\ |
161 |
> |
The $P_T(\ell\ell)$ method predicts $2.5 \pm 2.2$ events. |
162 |
> |
|
163 |
> |
All three background estimates are consistent within their uncertainties. |
164 |
> |
We thus take as our best estimate of the Standard Model yield in |
165 |
> |
the signal region the MC prediction and assign as an uncertainty the |
166 |
> |
maximal deviation with either of the data-driven methods, $N_{BG}=1.4 \pm 1.1$. |
167 |
> |
|
168 |
> |
We conclude that we see no evidence for an anomalous |
169 |
|
rate of opposite sign isolated dilepton events |
170 |
|
at high \met and high SumJetPt. The extraction of |
171 |
|
quantitative limits on new physics models is discussed |