ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/results.tex (file contents):
Revision 1.10 by benhoob, Thu Nov 11 12:44:58 2010 UTC vs.
Revision 1.23 by benhoob, Fri Nov 19 17:08:29 2010 UTC

# Line 1 | Line 1
1 < \clearpage
1 > %\clearpage
2  
3   \section{Results}
4   \label{sec:results}
# Line 14 | Line 14 | show our choice of ABCD regions.}
14  
15   The data, together with SM expectations is presented
16   in Figure~\ref{fig:abcdData}.  We see 1 event in the
17 < signal region (region $D$).  The Standard Model MC
18 < expectation is 1.4 events.
17 > signal region (region $D$).  For more information about
18 > this one candidate events, see Appendix~\ref{sec:cand}.
19 > The Standard Model MC expectation is 1.4 events.
20  
21   \subsection{Background estimate from the ABCD method}
22   \label{sec:abcdres}
23  
24   The data yields in the
25   four regions are summarized in Table~\ref{tab:datayield}.
26 < The prediction of the ABCD method is is given by $A\times C/B$ and
27 < is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming
28 < Gaussian errors). (see Table~\ref{tab:datayield}).  
26 > The prediction of the ABCD method is is given by $k_{ABCD} \times (A\times C/B)$ and
27 > is $1.8 \pm 1.0(stat) \pm 0.4(syst)$ events, where $k_{ABCD} = 1.2 \pm 0.2$ as discussed
28 > in Sec.~\ref{sec:abcd}.
29  
30   \begin{table}[hbt]
31   \begin{center}
32   \caption{\label{tab:datayield} Data yields in the four
33   regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
34 < by A$\times$C / B.  The quoted uncertainty
34 > by A $\times$C / B.  The quoted uncertainty
35   on the prediction in data is statistical only, assuming Gaussian errors.
36   We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
37   \begin{tabular}{l||c|c|c|c||c}
38   \hline
39 <         sample   &              A   &              B   &              C   &              D   & A$\times$C / B  \\
39 >         sample                          &              A   &              B   &              C   &              D   & A $\times$ C / B  \\
40   \hline
41 +
42   $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
43 < $t\bar{t}\rightarrow \mathrm{other}$   &           0.15   &           0.85   &           0.09   &           0.04   &           0.02  \\
44 <   $Z^0$ + jets   &           0.00   &           1.16   &           0.08   &           0.08   &           0.00  \\
45 < $W^{\pm}$ + jets   &           0.00   &           0.10   &           0.00   &           0.00   &           0.00  \\
46 <       $W^+W^-$   &           0.19   &           0.29   &           0.02   &           0.07   &           0.02  \\
47 <   $W^{\pm}Z^0$   &           0.03   &           0.04   &           0.01   &           0.01   &           0.00  \\
48 <       $Z^0Z^0$   &           0.00   &           0.03   &           0.00   &           0.00   &           0.00  \\
49 <     single top   &           0.28   &           1.00   &           0.04   &           0.01   &           0.01  \\
43 > $t\bar{t}\rightarrow \mathrm{other}$     &           0.15   &           0.85   &           0.09   &           0.04   &           0.02  \\
44 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &           0.03   &           1.47   &           0.10   &           0.10   &           0.00  \\
45 > $W^{\pm}$ + jets                         &           0.00   &           0.10   &           0.00   &           0.00   &           0.00  \\
46 >       $W^+W^-$                          &           0.19   &           0.29   &           0.02   &           0.07   &           0.02  \\
47 >   $W^{\pm}Z^0$                          &           0.03   &           0.04   &           0.01   &           0.01   &           0.00  \\
48 >       $Z^0Z^0$                          &           0.00   &           0.03   &           0.00   &           0.00   &           0.00  \\
49 >     single top                          &           0.28   &           1.00   &           0.04   &           0.01   &           0.01  \\
50   \hline
51 <    total SM MC   &           8.61   &          36.54   &           5.05   &           1.41   &           1.19  \\
51 >    total SM MC                          &           8.63   &          36.85   &           5.07   &           1.43   &           1.19  \\
52   \hline
53 <           data   &             11   &             36   &              5   &              1   &1.53 $\pm$ 0.86  \\
53 >           data                          &             11   &             36   &              5   &              1   &  $1.53 \pm 0.86$  \\
54   \hline
55   \end{tabular}
56   \end{center}
# Line 60 | Line 62 | $W^{\pm}$ + jets   &           0.00   &
62   %estimate of the $t\bar{t}$ contribution.  The result
63   %of this exercise is {\color{red} xx} events.
64  
65 < \clearpage
65 > %\clearpage
66  
67   \subsection{Background estimate from the $P_T(\ell\ell)$ method}
68   \label{sec:victoryres}
69  
70 + We first use the $P_T(\ell \ell)$ method to predict the number of events
71 + in control region A, defined in Sec.~\ref{sec:abcd} as
72 + $125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5~GeV$^{1/2}$.
73 + We count the number of events in region
74 + $A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
75 + cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
76 + and find $N_{A'}=6$. We subtract off the expected DY contribution in this region
77 + $N_{DY} = 2.5 \pm 2.4$, derived in Sec.~\ref{sec:othBG}.
78 + To predict the yield in region A we take
79 + $N_A = K \cdot K_C \cdot ( N_{A'} - N_{DY} ) = 6.1 \pm 6.0$
80 + (statistical uncertainty only, assuming Gaussian errors),
81 + where we have taken $K = 1.73$ and $K_C = 1$. This yield is consistent
82 + with the observed yield of 11 events, as shown in
83 + Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left).
84 +
85 + Encouraged by the good agreement between predicted and observed yields
86 + in the control region, we proceed to perform the $P_T(\ell \ell)$ method
87 + in the signal region ${\rm SumJetPt}>300$~GeV.
88   The number of data events in region $D'$, which is defined in
89   Section~\ref{sec:othBG} to be the same as region $D$ but with the
90   $\met/\sqrt{\rm SumJetPt}$ requirement
91 < replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
92 < is $N_{D'}=2$.  Thus the BG prediction is
93 < $N_D = K \cdot K_C \cdot N_{D'} = 1.5$
94 < where $K=1.5 \pm xx$ as derived in Sec.~\ref{sec:victory} and
95 < $K_C = 1$.
96 < Note that if we were to subtract off from region $D'$
97 < the {\color{red} 0.8 $\pm$ 0.8} DY events estimated from
98 < Section~\ref{sec:othBG}, the background
99 < prediction would change to $N_D=1.8 \pm xx$ events.
100 <
101 < %%%TO BE REPLACED
102 < %{\color{red}As mentioned previously, for the 11/pb analysis
83 < %we use the $K$ factor from data and take $K=1$.
84 < %This will change for the full dataset.  We will also pay
85 < %more attention to the statistical errors.}
86 <
87 < %The number of data events in region $D'$, which is defined in
88 < %Section~\ref{sec:othBG} to be the same as region $D$ but with the
89 < %$\met/\sqrt{\rm SumJetPt}$ requirement
90 < %replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
91 < %is $N_{D'}=1$.  Thus the BG prediction is
92 < %$N_D = K \cdot K_{\rm fudge} \cdot N_{D'} = 1.5$
93 < %where we used $K=1.5 \pm xx$ and $K_{\rm fudge}=1.0 \pm 0.0$.
94 < %Note that if we were to subtract off from region $D'$
95 < %the {\color{red} 0.4 $\pm$ 0.4} DY events estimated from
96 < %Section~\ref{sec:othBG}, the background
97 < %prediction would change to $N_D=0.9 \pm xx$ events.
98 < %{\color{red} When we do this with a real
99 < %$K_{\rm fudge}$, the fudge factor will be different
100 < %after the DY subtraction.}
101 <
102 < As a cross-check, we use the $P_T(\ell \ell)$
103 < method to also predict the number of events in the
104 < control region $125<{\rm SumJetPt}<300$ GeV and
105 < \met/$\sqrt{\rm SumJetPt} > 8.5$.  We predict
106 < $5.6^{+x}_{-y}$ events and we observe 4.
107 < The results of the $P_T(\ell\ell)$ method are
108 < summarized in Figure~\ref{fig:victory}.
91 > replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
92 > is $N_{D'}=2$.  
93 > We next subtract off the expected DY contribution of
94 > $N_{DY}$ = $0.4 \pm 0.4$ events, as calculated
95 > in Sec.~\ref{sec:othBG}. The BG prediction is
96 > $N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 2.5 \pm 2.2$ (statistical
97 > uncertainty only, assuming Gaussian errors), where $K=1.54 \pm xx$
98 > as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
99 > This prediction is consistent with the observed yield of
100 > 1 event, as summarized in Table~\ref{tab:victory_signal} and Fig.~\ref{fig:victory}
101 > (right).
102 >
103  
104   \begin{figure}[hbt]
105   \begin{center}
# Line 120 | Line 114 | ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in
114   \end{figure}
115  
116  
117 +
118   \begin{table}[hbt]
119   \begin{center}
120 < \label{tab:victory_control}
121 < \caption{Results of the dilepton $p_{T}$ template method in the control region
127 < $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
120 > \caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region
121 > $125 < \mathrm{sumJetPt} < 300$~GeV$^{1/2}$. The predicted and observed yields for
122   the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
123   and MC. The error on the prediction for data is statistical only, assuming
124   Gaussian errors.}
125 < \begin{tabular}{l|c|c|c}
125 > \begin{tabular}{lccc}
126   \hline
127                & Predicted           &   Observed &  Obs/Pred \\
128   \hline
129 < total SM   MC &      7.10           &       8.61 &      1.21 \\
130 <         data &    10.38 $\pm$ 4.24 &         11 &      1.06 \\
129 > total SM   MC &      7.18           &       8.63 &      1.20 \\
130 >         data &    $6.06 \pm 5.95$  &         11 &      1.82 \\
131   \hline
132   \end{tabular}
133   \end{center}
# Line 141 | Line 135 | total SM   MC &      7.10           &
135  
136   \begin{table}[hbt]
137   \begin{center}
138 < \label{tab:victory_control}
139 < \caption{Results of the dilepton $p_{T}$ template method in the signal region
146 < $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
138 > \caption{\label{tab:victory_signal}Results of the dilepton $p_{T}$ template method in the signal region
139 > $\mathrm{sumJetPt} > 300$~GeV$^{1/2}$. The predicted and observed yields for
140   the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
141   and MC. The error on the prediction for data is statistical only, assuming
142   Gaussian errors.}
143 < \begin{tabular}{l|c|c|c}
143 > \begin{tabular}{lccc}
144   \hline
145 <              & Predicted           &   Observed &  Obs/Pred \\
145 >              & Predicted                &   Observed &  Obs/Pred \\
146   \hline
147 < total SM   MC &      0.96           &       1.41 &      1.46 \\
148 <         data &     3.07 $\pm$ 2.17 &          1 &      0.33 \\
147 > total SM   MC &      1.03                &       1.43 &      1.38 \\
148 >         data &    $2.53 \pm 2.25$       &          1 &      0.40 \\
149   \hline
150   \end{tabular}
151   \end{center}
152   \end{table}
153  
154  
155 + % \clearpage
156   \subsection{Summary of results}
157 < To summarize: we see no evidence for an anomalous
157 >
158 > In summary, in the signal region defined as $\mathrm{SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt} > 8.5$~GeV$^{1/2}$:\\
159 > We observe 1 event. \\
160 > We expect 1.4 events from Standard Model MC prediction. \\
161 > The ABCD data driven method predicts $1.8 \pm 1.0(stat) \pm 0.4(syst)$ events. \\
162 > The  $P_T(\ell\ell)$ method predicts $2.5 \pm 2.2$ events.
163 >  
164 > All three background estimates are consistent within their uncertainties.
165 > We thus take as our best estimate of the Standard Model yield in
166 > the signal region the MC prediction and assign as an uncertainty the
167 > maximal deviation with either of the data-driven methods,  $N_{BG}=1.4 \pm 1.1$.
168 >
169 > We conclude that we see no evidence for an anomalous
170   rate of opposite sign isolated dilepton events
171   at high \met and high SumJetPt.  The extraction of
172   quantitative limits on new physics models is discussed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines