ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/results.tex (file contents):
Revision 1.4 by benhoob, Mon Nov 8 11:08:01 2010 UTC vs.
Revision 1.11 by benhoob, Thu Nov 11 15:29:40 2010 UTC

# Line 1 | Line 1
1 + \clearpage
2 +
3   \section{Results}
4   \label{sec:results}
5  
4 %\noindent {\color{red} In the 11 pb everything is very
5 %simple because there are a few zeros.  This text is written
6 %for the full dataset under the assumption that some of these
7 %numbers will not be zero anymore.}
8
6   \begin{figure}[tbh]
7   \begin{center}
8 < \includegraphics[width=0.75\linewidth]{abcdData.png}
8 > \includegraphics[width=0.75\linewidth]{abcd_35pb.png}
9   \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
10   vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data.  Here we also
11   show our choice of ABCD regions.}
12   \end{center}
13   \end{figure}
14  
18
15   The data, together with SM expectations is presented
16 < in Figure~\ref{fig:abcdData}.  We see $\color{red} 0$
17 < events in the signal region (region $D$).  The Standard Model
18 < MC expectation is {\color{red} 0.4} events.
16 > in Figure~\ref{fig:abcdData}.  We see 1 event in the
17 > signal region (region $D$).  The Standard Model MC
18 > expectation is 1.4 events.
19  
20   \subsection{Background estimate from the ABCD method}
21   \label{sec:abcdres}
22  
23   The data yields in the
24   four regions are summarized in Table~\ref{tab:datayield}.
25 < The prediction of the ABCD method is is given by $AC/B$ and
26 < is 0.5 events.
27 < (see Table~\ref{tab:datayield}.  
25 > The prediction of the ABCD method is is given by $A\times C/B$ and
26 > is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming
27 > Gaussian errors). (see Table~\ref{tab:datayield}).  
28  
29   \begin{table}[hbt]
30   \begin{center}
31   \caption{\label{tab:datayield} Data yields in the four
32 < regions of Figure~\ref{fig:abcdData}.  The quoted uncertainty
32 > regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
33 > by A$\times$C / B.  The quoted uncertainty
34   on the prediction in data is statistical only, assuming Gaussian errors.
35 < We also show the SM Monte Carlo expectations.}
36 < \begin{tabular}{|l|c|c|c|c||c|}
35 > We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
36 > \begin{tabular}{l||c|c|c|c||c}
37 > \hline
38 >         sample   &              A   &              B   &              C   &              D   & A$\times$C / B  \\
39   \hline
40 <      &A   & B    & C   & D   & AC/B \\ \hline
41 < Data  &3   & 6    & 1   & 0   & $0.5^{+0.6}_{-0.5}$ \\
42 < SM MC &2.5 &11.2  & 1.5 & 0.4 & 0.4 \\
40 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
41 > $t\bar{t}\rightarrow \mathrm{other}$   &           0.15   &           0.85   &           0.09   &           0.04   &           0.02  \\
42 >   $Z^0$ + jets   &           0.00   &           1.16   &           0.08   &           0.08   &           0.00  \\
43 > $W^{\pm}$ + jets   &           0.00   &           0.10   &           0.00   &           0.00   &           0.00  \\
44 >       $W^+W^-$   &           0.19   &           0.29   &           0.02   &           0.07   &           0.02  \\
45 >   $W^{\pm}Z^0$   &           0.03   &           0.04   &           0.01   &           0.01   &           0.00  \\
46 >       $Z^0Z^0$   &           0.00   &           0.03   &           0.00   &           0.00   &           0.00  \\
47 >     single top   &           0.28   &           1.00   &           0.04   &           0.01   &           0.01  \\
48 > \hline
49 >    total SM MC   &           8.61   &          36.54   &           5.05   &           1.41   &           1.19  \\
50 > \hline
51 >           data   &             11   &             36   &              5   &              1   &1.53 $\pm$ 0.86  \\
52   \hline
53   \end{tabular}
54   \end{center}
# Line 52 | Line 60 | SM MC &2.5 &11.2  & 1.5 & 0.4 & 0.4 \\
60   %estimate of the $t\bar{t}$ contribution.  The result
61   %of this exercise is {\color{red} xx} events.
62  
63 + \clearpage
64 +
65   \subsection{Background estimate from the $P_T(\ell\ell)$ method}
66   \label{sec:victoryres}
67  
68 + We first use the $P_T(\ell \ell)$ method to predict the number of events
69 + in a control region defined by $125<{\rm SumJetPt}<300$~GeV and
70 + \met/$\sqrt{\rm SumJetPt} > 8.5$. We find 6 events satisfying the
71 + corresponding selection with the \met/$\sqrt{\rm SumJetPt}$ cut replaced
72 + by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ cut. The predicted yield
73 + is then given by $N_A = K \cdot K_C \cdot N_{A'} = 10.4 \pm 4.2$
74 + (statistical uncertainty only, assuming Gaussian errors),
75 + where we have taken $K = 1.73$ and $K_C = 1$. This yield is in good
76 + agreement with the observed yield of 11 events, as shown in
77 + Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left).
78 + {\color{ref} \bf Perform DY estimate for this control region}.
79 +
80 + Encouraged by the good agreement between predicted and observed yields
81 + in the control region, we proceed to perform the $P_T(\ell \ell)$ method
82 + in the signal region ${\rm SumJetPt}>300$~GeV.
83   The number of data events in region $D'$, which is defined in
84   Section~\ref{sec:othBG} to be the same as region $D$ but with the
85   $\met/\sqrt{\rm SumJetPt}$ requirement
86 < replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
87 < is $N_{D'}=1$.  Thus the BG prediction is
88 < $N_D = K \cdot N_{D'} = 1.5$
89 < where $K=1.5 \pm xx$ as derived in Sec.~\ref{sec:victory}.
90 < Note that if we were to subtract off from region $D'$
91 < the {\color{red} 0.4 $\pm$ 0.4} DY events estimated from
92 < Section~\ref{sec:othBG}, the background
93 < prediction would change to $N_D=0.9 \pm xx$ events.
94 <
95 < %%%TO BE REPLACED
96 < %{\color{red}As mentioned previously, for the 11/pb analysis
72 < %we use the $K$ factor from data and take $K=1$.
73 < %This will change for the full dataset.  We will also pay
74 < %more attention to the statistical errors.}
75 <
76 < %The number of data events in region $D'$, which is defined in
77 < %Section~\ref{sec:othBG} to be the same as region $D$ but with the
78 < %$\met/\sqrt{\rm SumJetPt}$ requirement
79 < %replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
80 < %is $N_{D'}=1$.  Thus the BG prediction is
81 < %$N_D = K \cdot K_{\rm fudge} \cdot N_{D'} = 1.5$
82 < %where we used $K=1.5 \pm xx$ and $K_{\rm fudge}=1.0 \pm 0.0$.
83 < %Note that if we were to subtract off from region $D'$
84 < %the {\color{red} 0.4 $\pm$ 0.4} DY events estimated from
85 < %Section~\ref{sec:othBG}, the background
86 < %prediction would change to $N_D=0.9 \pm xx$ events.
87 < %{\color{red} When we do this with a real
88 < %$K_{\rm fudge}$, the fudge factor will be different
89 < %after the DY subtraction.}
90 <
91 < As a cross-check, we use the $P_T(\ell \ell)$
92 < method to also predict the number of events in the
93 < control region $120<{\rm SumJetPt}<300$ GeV and
94 < \met/$\sqrt{\rm SumJetPt} > 8.5$.  We predict
95 < $5.6^{+x}_{-y}$ events and we observe 4.
96 < The results of the $P_T(\ell\ell)$ method are
97 < summarized in Figure~\ref{fig:victory}.
86 > replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
87 > is $N_{D'}=2$.  Thus the BG prediction is
88 > $N_D = K \cdot K_C \cdot N_{D'} = 3.07 \pm 2.17$ where $K=1.54 \pm xx$
89 > as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
90 > We next subtract off the expected DY contribution of
91 > {\color{red} \bf 0.8 $\pm$ 0.8 (update DY estimate)} events, as calculated
92 > in Sec.~\ref{sec:othBG}. This gives a predicted yield of
93 > $N_D=1.8^{+2.5}_{-1.8}$ events, which is consistent with the observed yield of
94 > 1 event.
95 >
96 >
97  
98   \begin{figure}[hbt]
99   \begin{center}
100 < \includegraphics[width=0.48\linewidth]{victory_control.png}
101 < \includegraphics[width=0.48\linewidth]{victory_sig.png}
100 > \includegraphics[width=0.48\linewidth]{victory_control_35pb.png}
101 > \includegraphics[width=0.48\linewidth]{victory_signal_35pb.png}
102   \caption{\label{fig:victory}\protect Distributions of
103   tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
104   We show the oberved distributions in both Monte Carlo and data.
# Line 109 | Line 108 | ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in
108   \end{figure}
109  
110  
111 + \begin{table}[hbt]
112 + \begin{center}
113 + \label{tab:victory_control}
114 + \caption{Results of the dilepton $p_{T}$ template method in the control region
115 + $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
116 + the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
117 + and MC. The error on the prediction for data is statistical only, assuming
118 + Gaussian errors.}
119 + \begin{tabular}{l|c|c|c}
120 + \hline
121 +              & Predicted           &   Observed &  Obs/Pred \\
122 + \hline
123 + total SM   MC &      7.10           &       8.61 &      1.21 \\
124 +         data &    10.38 $\pm$ 4.24 &         11 &      1.06 \\
125 + \hline
126 + \end{tabular}
127 + \end{center}
128 + \end{table}
129 +
130 + \begin{table}[hbt]
131 + \begin{center}
132 + \label{tab:victory_control}
133 + \caption{Results of the dilepton $p_{T}$ template method in the signal region
134 + $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
135 + the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
136 + and MC. The error on the prediction for data is statistical only, assuming
137 + Gaussian errors.}
138 + \begin{tabular}{l|c|c|c}
139 + \hline
140 +              & Predicted                &   Observed &  Obs/Pred \\
141 + \hline
142 + total SM   MC &      0.96                &       1.41 &      1.46 \\
143 +         data &  $N_D=1.8^{+2.5}_{-1.8}$ &          1 &      0.33 \\
144 + \hline
145 + \end{tabular}
146 + \end{center}
147 + \end{table}
148 +
149 +
150   \subsection{Summary of results}
151   To summarize: we see no evidence for an anomalous
152   rate of opposite sign isolated dilepton events
153   at high \met and high SumJetPt.  The extraction of
154   quantitative limits on new physics models is discussed
155 < in Section~\ref{sec:limits}.
155 > in Section~\ref{sec:limit}.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines