ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/results.tex (file contents):
Revision 1.4 by benhoob, Mon Nov 8 11:08:01 2010 UTC vs.
Revision 1.7 by benhoob, Wed Nov 10 17:27:20 2010 UTC

# Line 1 | Line 1
1 + \clearpage
2 +
3   \section{Results}
4   \label{sec:results}
5  
4 %\noindent {\color{red} In the 11 pb everything is very
5 %simple because there are a few zeros.  This text is written
6 %for the full dataset under the assumption that some of these
7 %numbers will not be zero anymore.}
8
6   \begin{figure}[tbh]
7   \begin{center}
8 < \includegraphics[width=0.75\linewidth]{abcdData.png}
8 > \includegraphics[width=0.75\linewidth]{abcd_35pb.png}
9   \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
10   vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data.  Here we also
11   show our choice of ABCD regions.}
12   \end{center}
13   \end{figure}
14  
18
15   The data, together with SM expectations is presented
16 < in Figure~\ref{fig:abcdData}.  We see $\color{red} 0$
17 < events in the signal region (region $D$).  The Standard Model
18 < MC expectation is {\color{red} 0.4} events.
16 > in Figure~\ref{fig:abcdData}.  We see 1 event in the
17 > signal region (region $D$).  The Standard Model MC
18 > expectation is 1.4 events.
19  
20   \subsection{Background estimate from the ABCD method}
21   \label{sec:abcdres}
22  
23   The data yields in the
24   four regions are summarized in Table~\ref{tab:datayield}.
25 < The prediction of the ABCD method is is given by $AC/B$ and
26 < is 0.5 events.
31 < (see Table~\ref{tab:datayield}.  
25 > The prediction of the ABCD method is is given by $A\times C/B$ and
26 > is 1.5 events. (see Table~\ref{tab:datayield}.  
27  
28   \begin{table}[hbt]
29   \begin{center}
30   \caption{\label{tab:datayield} Data yields in the four
31 < regions of Figure~\ref{fig:abcdData}.  The quoted uncertainty
31 > regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
32 > by A$\times$C / B.  The quoted uncertainty
33   on the prediction in data is statistical only, assuming Gaussian errors.
34 < We also show the SM Monte Carlo expectations.}
35 < \begin{tabular}{|l|c|c|c|c||c|}
34 > We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
35 > \begin{tabular}{l||c|c|c|c||c}
36 > \hline
37 >         sample   &              A   &              B   &              C   &              D   & A$\times$C / B  \\
38 > \hline
39 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
40 > $t\bar{t}\rightarrow \mathrm{other}$   &           0.15   &           0.85   &           0.09   &           0.04   &           0.02  \\
41 >   $Z^0$ + jets   &           0.00   &           1.16   &           0.08   &           0.08   &           0.00  \\
42 > $W^{\pm}$ + jets   &           0.00   &           0.10   &           0.00   &           0.00   &           0.00  \\
43 >       $W^+W^-$   &           0.19   &           0.29   &           0.02   &           0.07   &           0.02  \\
44 >   $W^{\pm}Z^0$   &           0.03   &           0.04   &           0.01   &           0.01   &           0.00  \\
45 >       $Z^0Z^0$   &           0.00   &           0.03   &           0.00   &           0.00   &           0.00  \\
46 >     single top   &           0.28   &           1.00   &           0.04   &           0.01   &           0.01  \\
47 > \hline
48 >    total SM MC   &           8.61   &          36.54   &           5.05   &           1.41   &           1.19  \\
49   \hline
50 <      &A   & B    & C   & D   & AC/B \\ \hline
42 < Data  &3   & 6    & 1   & 0   & $0.5^{+0.6}_{-0.5}$ \\
43 < SM MC &2.5 &11.2  & 1.5 & 0.4 & 0.4 \\
50 >           data   &             11   &             36   &              5   &              1   &1.53 $\pm$ 0.86  \\
51   \hline
52   \end{tabular}
53   \end{center}
# Line 60 | Line 67 | Section~\ref{sec:othBG} to be the same a
67   $\met/\sqrt{\rm SumJetPt}$ requirement
68   replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
69   is $N_{D'}=1$.  Thus the BG prediction is
70 < $N_D = K \cdot N_{D'} = 1.5$
71 < where $K=1.5 \pm xx$ as derived in Sec.~\ref{sec:victory}.
70 > $N_D = K \cdot K_C \cdot N_{D'} = 1.5$
71 > where $K=1.5 \pm xx$ as derived in Sec.~\ref{sec:victory} and
72 > $K_C = 1$.
73   Note that if we were to subtract off from region $D'$
74   the {\color{red} 0.4 $\pm$ 0.4} DY events estimated from
75   Section~\ref{sec:othBG}, the background
# Line 114 | Line 122 | To summarize: we see no evidence for an
122   rate of opposite sign isolated dilepton events
123   at high \met and high SumJetPt.  The extraction of
124   quantitative limits on new physics models is discussed
125 < in Section~\ref{sec:limits}.
125 > in Section~\ref{sec:limit}.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines